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Effect of dynamical screening in the Bethe-Salpeter framework: Excitons in crystalline naphthalene
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Solving the Bethe-Salpeter equation (BSE) for the optical polarization functions is a first principles means to
model optical properties of materials including excitonic effects. One almost ubiquitously used approximation
neglects the frequency dependence of the screened electron-hole interaction. This is commonly justified by the
large difference in the magnitude of electronic plasma frequency and exciton binding energy. We incorporated
dynamical effects into the screening of the electron-hole interaction in the BSE using two different approxima-
tions as well as exact diagonalization of the exciton Hamiltonian. We compare these approaches for a naphthalene
organic crystal, for which the difference between exciton binding energy and plasma frequency is only about a
factor of ten. Our results show that in this case, corrections due to dynamical screening are about 15% of the
exciton binding energy. We analyze the effect of screening dynamics on optical absorption across the visible
spectral range and use our data to establish an effective screening model as a computationally efficient approach
to approximate dynamical effects in complex materials in the future.
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I. INTRODUCTION

Linear dielectric response is the underlying property that
renders materials interesting for optoelectronic applications
including solar cells, transistors, and displays, since excita-
tions of electrons control fundamental mechanisms of optical
absorption and emission [1–4]. Most state-of-the-art devices
rely on traditional inorganic semiconductors that are well-
studied from both experimental and theoretical perspective
[5]. Apart from these, systems such as organic crystals have
also been reported to have great potential, e.g., as solar cells,
sensors, transistors, and others [6–10]. Singlet-triplet fission,
for instance, can provide a novel mechanism that may enable
design of more efficient, flexible solar cells [7,8]. It is thus
important to accurately model optical and excitonic properties
for these materials, to make reliable predictions for potential
applications and device design.

Predictive first-principles simulations based on density
functional theory (DFT) [11,12] and Fermi’s golden rule
have proven to be important in understanding optical absorp-
tion of many semiconductor materials [3,4,13,14]. However,
the lack of considering the electron-hole Coulomb interac-
tions that dominate excited electronic states render traditional
DFT-based techniques insufficient for describing optical ab-
sorption. The independent-particle picture fails to provide
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accurate optical spectra and, in particular, does not provide
information about excitonic effects that are critically impor-
tant for applications, including organic solar cells [15–17].
To accurately model these, the screened Coulomb interaction
of excited electron-hole pairs needs to be considered and the
Bethe-Salpeter equation (BSE) approach within many-body
perturbation theory is commonly used [4,18]. The solution of
the BSE is a Green’s function technique that allows to include
excitonic effects in the first-principles description, leading
to an accurate and commonly used theoretical-spectroscopy
route to describe optical excitations. It has proven successful
in many studies that predict optical and excitonic properties
of bulk semiconductors [19–23].

Within the BSE approach, the accurate description of di-
electric screening is an important aspect of the underlying
physics that is key to accurately simulating optical spectra.
While the screening of the electron-hole interaction is spa-
tially inhomogeneous and dynamical in principle, especially
the dynamical effects are not well explored in practice. This is
because the theoretical description of dynamical screening is
challenging, the computational cost is high, and such effects
are believed to be small in many traditional bulk semicon-
ductors. Hence, most of the BSE implementations currently
used adopt a static, frequency-independent approximation of
dielectric screening [23–28]. This approximation neglects the
rearrangement of the electrons upon forming electron-hole
pairs, i.e., the dynamical evolution of the screening [18].

Whether electronic screening dynamics can be neglected,
however, is related to the relative ratio of the plasma fre-
quency and the exciton binding energy of a material [4,18].
In particular, electronic dynamical effects cannot be ne-
glected when exciton-binding energies are comparable to the
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plasma frequency. Examples of large exciton binding ener-
gies on the order of few hundreds of meV to a few eV
include low-dimensional materials [29–32] and organic crys-
tals [15–17,33]. Consequently, there are indeed computational
studies of organic crystals and doped 2D materials [30,34] that
report large corrections on the order of a few hundred meV
for the exciton binding energy due to electronic screening dy-
namics. However, different approximations of incorporating
dynamical screening effects, treating the dynamical screen-
ing as a first-order perturbation [4] or using an effective
static screening function [30], have not been systematically
compared to each other or to exactly solving the dynamical
BSE.

In this work, we discuss different approximations for in-
corporating dynamical screening into the solution of the BSE.
The challenges are at least twofold: dynamical screening of
the electron-hole interaction complicates the many-body per-
turbation theory framework, since the resulting BSE depends
on two frequencies, preventing a closed-form equation for a
single-frequency dependent polarization function [4,18,35].
While this can be overcome using the Shindo approximation
[18,36], the resulting BSE eigenvalue problem parametrically
depends on the frequency and requires sampling of many
frequency points, significantly increasing the computational
cost. Rohlfing and Louie proposed a perturbative treatment
and used it to examine dynamical screening in molecular
SiH4 [4]. This approach is also used to examine dynamical
effects in biological organic materials such as photoactive
yellow protein and dicyanovinyl-substituted oligothiophenes
[37–39]. While it provides an efficient way to incorporate
dynamical screening for a small number of excitonic states,
e.g., around the absorption edge, it is not directly applicable
for simulations of optical spectra, where a large number of
excitonic states across a certain energy range is required. In
addition, this approach approximates the true excitonic wave
function by the static one, which is only valid when dynamical
effects are small.

In this work, we follow Refs. [18,40] in using the Shindo
approximation and a plasmon pole model for the analytical
integration of the frequency-dependent dielectric function to
obtain an expression for a single frequency-dependent dy-
namical BSE. We then implement and compare different
approximations to numerically solve the dynamical BSE,
including a static model with effective screening [30], the
above-mentioned first-order perturbation approach [4], and
exact diagonalization of the Hamiltonian. By solving the
dynamical BSE directly on a frequency grid, we were able
to examine not only the effect of dynamical screening on
exciton-binding energies, but also on optical spectra. Our
results show that while approximate treatments provide rea-
sonable estimates of the magnitude of spectral shifts due
to screening dynamics close to the absorption onset, small
qualitative differences remain compared to the exact solution
for excitonic states higher in energy. In addition, we show
that an effective static screening, derived within the dynam-
ical screening framework [30,41], requires only the lowest
exciton-binding energy as input and still provides a good
description of spectra. It provides a computationally tractable
alternative, e.g., for studying complex or large numbers of
materials.

In this work, we use crystalline naphthalene as an example.
For this material, previous theoretical calculations report exci-
ton binding energies of 0.9 eV, underestimating experimental
measurements of 1.0–1.5 eV [33]. Since this exciton binding
energy is about 10% of the plasma frequency, dynamical
electronic screening can become important [4,18,30,37]. Our
work provides a quantitative understanding of the importance
of dynamical electronic screening and provides guidance for
appropriate regimes of using different approximations when
studying optical and excitonic properties of more complicated
materials.

II. THEORETICAL APPROACH

The theoretical description of excitonic effects in this work
starts from the Bethe-Salpeter equation (BSE) for the macro-
scopic (M) optical polarization function PM . It follows from
Hedin’s equations for interacting electrons [42] and describes
the probability amplitude of the process of annihilating an
electron at (r′

2, t ′
2) after creating one at (r′

1, t ′
1), together with

annihilating a hole at (r2, t2) after creating one at (r1, t1). In
reciprocal and frequency space, the full BSE reads [18]

PM (λ1λ
′
1, λ2λ

′
2, znzm)= −ih̄Gλ1 (zn)Gλ′

1
(zn −zm)×

{
δλ1λ

′
2
δλ′

1λ2

+ 1
−ih̄β

∑
n′

∑
λ3λ4

[ − W λ1λ3
λ′

1λ4
(zn − zn′ )

+2v̄
λ1λ

′
1

λ3λ4

] × PM (λ3λ4, λ2λ
′
2, zn′zm)

}
.

(1)

Here, β = 1/(kBT ) where kB is the Boltzmann constant
and T is temperature. zn and zn′ are Fermionic Matsubara
frequencies, corresponding to the Fourier components of the
time difference between t1 and t ′

1, zm is the bosonic Mat-
subara frequency, corresponding to the Fourier component
of the time difference between t1 and t2. λ are indices for
all single-particle electronic states. Gλ(z) = 1/(h̄z − Eλ) are
single-particle Green’s functions [4,43] with Eλ being the
energy of the single-particle electron and hole state λ. W and v̄

are the screened and the short-range bare Coulomb interaction
of electrons and holes, respectively. It can be seen that the
polarization function in Eq. (1) depends on two frequency
arguments, zn and zm.

To describe optical excitation due to absorption of a single
photon, one needs to obtain the polarization function that de-
pends on only one frequency. In principle, this can be obtained
by summing Eq. (1) over n [18],

PM (λ1λ
′
1, λ2λ

′
2, zm) = 1

−ih̄β

∑
n

PM (λ1λ
′
1, λ2λ

′
2, znzm). (2)

In practice, evaluating Eq. (2) is difficult for two reasons:
First, to obtain each polarization function on the right-hand
side, a complicated matrix problem needs to be solved that
involves the n′-sum over the frequency-dependent screened
Coulomb interaction in Eq. (1). Second, this procedure needs
to be done many times for different zn in order to evaluate the
sum in Eq. (2).
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A. Static Bethe-Salpeter equation

The standard approach to avoiding these difficulties is to
neglect the frequency dependence of the screening, i.e., as-
suming

W (zn − zn′ ) ≡ W (0), (3)

where W (0) is the zero-frequency, static limit. It can be shown
that with this approximation one can insert Eq. (1) into Eq. (2)
and obtain a problem that only involves the polarization func-
tion that depends on a single frequency argument [4,18,43]

PM (λ1λ
′
1, λ2λ

′
2, zm) = f (λ1) − f (λ′

1)

Eλ1 − Eλ′
1
− h̄zm

×
{

δλ1λ
′
2
δλ′

1λ2

+
∑
λ3λ4

[
−W λ1λ3

λ′
1λ4

+ 2v̄
λ1λ

′
1

λ3λ4

]

× PM (λ3λ4, λ2λ
′
2, zm)

}
. (4)

The Green’s functions in Eq. (1) result in the term f (λ1 )− f (λ′
1 )

Eλ1 −Eλ′
1
−h̄zm

,

where f (λ) is the occupation factor of state λ. The crucial dif-
ference to Eq. (1) is that Eq. (4) contains only one frequency
argument zm and the complicated sum over n in Eq. (2) is
avoided. Subsequently, Eq. (4) is transformed into a gener-
alized eigenvalue problem [44].

From now on, we consider translational invariance, fully
occupied valence states, and entirely empty conduction states,
as is the case in semiconductor crystals at low temperature.
This turns λ → ck, vk, and the standard BSE Hamiltonian is
obtained [4,18,44] as

Ĥvck,v′c′k′ = (Eck − Evk )δvv′δcc′δkk′ + 2v̄v′c′k′
vck − W v′c′k′

vck , (5)

where Eck and Evk are the energies of the electronic state at
point k in reciprocal space, and c and v represent conduc-
tion and valence band index, respectively. The term v̄v′c′k′

vck

describes the bare Coulomb interaction, which is a short-range
exchange term, and W v′c′k′

vck describes the screened electron-
hole Coulomb interaction that in the static approximation
is computed using the inverse q-dependent dielectric ma-
trix ε−1(q, ω = 0). Solving the eigenvalue problem for the
Hamiltonian in Eq. (5) provides pair resonance energies E�

and eigenfunctions A� for excitonic states indexed by �.
These are used to compute the dielectric function that can
be compared to experiment, and to analyze exciton binding
energies. The connection of the polarization function [P(ω)]
from the solution of the eigenvalue problem, and the dielectric
function, is identical in the static and dynamical screening
case, [ε(ω) = 1 − vP(ω)], see Ref. [18] for details.

B. Dynamical Bethe-Salpeter equation

To preserve the frequency dependence of W , an alternative
way of obtaining a single-frequency dependent polarization
function is through Shindo’s approximation [36]. Instead of
Eq. (3), this approximation expresses the two-frequency de-
pendent polarization function PM (znzm) in Eq. (1) directly
in terms of the Green’s function of noninteracting elec-
trons and holes and the one-frequency dependent polarization
function PM (zm), see Eq. (S1) in the supplemental informa-
tion [45]. This approximation leads to an expression for the
single-frequency dependent polarization function that takes a
very similar form as Eq. (4), with the frequency-independent
screened Coulomb interaction W replaced by an effective,
frequency-dependent W̃ (zm) [18] (see Eq. (S3) in Ref. [45]).
Considering only real frequencies involved in optical excita-
tions (zm → ω) allows the transformation into an eigenvalue
problem for the frequency-dependent BSE Hamiltonian [18]

H̃vck,v′c′k′ (ω) =(Eck − Evk )δvv′δcc′δkk′ + 2v̄v′c′k′
vck − W̃ v′c′k′

vck (ω).

(6)

Compared to Eq. (5), the frequency dependence of Eq. (6)
comes from the effective, frequency-dependent screened
Coulomb interaction W̃ (ω) which takes the form [4,18]

W̃ v′c′k′
vck (ω) = 1

V

∑
q,G,G′

v(
√

|q + G||q + G′|)Bcc′,kk′ (q + G)B∗
vv′,kk′ (q + G′)

{
δGG′ +

∫ ∞

0

dh̄ω′

π
Imε−1(q + G, q + G′, ω′)

×
[

1

h̄ω′ + Eck − Ev′k′ − h̄ω
+ 1

h̄ω′ + Ec′k′ − Evk − h̄ω

]}
δq,k−k′ , (7)

where v is the Coulomb potential in reciprocal space. In
addition, V is the volume of the unit cell, q represents the
reciprocal wave vector, G and G′ are reciprocal lattice vec-
tors. ε(q + G, q + G′, ω′) is the frequency and wave-vector
dependent dielectric function. The terms Bcc′,kk′ and Bvv′,kk′

are the Bloch integrals that account for the overlap between
single particle Bloch wave functions [18]:

Bcc′,kk′ (q + G) = δq,k−k′ 〈uck|eiG·r|uc′k′ 〉, (8)

where uck(r) represents the Bloch-periodic part of the Kohn-
Sham state ψck. The frequency integral in the second term

inside the curly brackets results from Shindo’s approximation
[18], since the two-frequency dependence is replaced by a
sum over single-frequency dependent polarization functions
[18,36]. We note that the Shindo approximation uses the
screened Coulomb interaction W , that is also part of the GW
approximation, and turns it into W̃ via Eq. (S4) of Ref. [45]. W̃
is more complicated due to the additional energy denominator
terms.

We refer to the supplemental information Eq. (S3) for
the single frequency dependent polarization function using
Shindo’s approximation [45] and Ref. [18] for the derivation
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of Eq. (7), as well as for complete details on how to obtain the
eigenvalue problem from the BSE, which is identical in the
static and dynamic case. The form of the frequency dependent
screened Coulomb potential Eq. (7) has also been derived in
multiple other references [4,36,46]. Shindo’s approximation
is argued to be a first-order approximation with respect to
the dynamical nature of the screened potential [18,47–50].
Without assuming static screening in the BSE, the Shindo
approximation, Eq. (S1), requires a small difference of the
dynamic potential and an effective static potential. It uses only
the zeroth order of an expansion in the difference of these
two potentials, leading to Eqs. (S3) and (S4). We show later
in Secs. IV B and IV C that in our work, this requirement
is fulfilled since the dependence of the excitation energy on
frequency is an order of magnitude smaller than the excitation
energy itself. We will show that the dynamical correction
does not exceed 15% of the exciton binding energy. However,
studying its validity quantitatively is very hard and has not
been accomplished so far. In this work, we analyze dynamical
screening effects within the framework of Shindo’s approxi-
mation, and do not consider any effects beyond.

With Eqs. (6) and (7), two aspects need to be addressed
to solve the dynamical problem. First, an eigenvalue problem
needs to be solved similar to the static case, however, now
with a frequency-dependent BSE Hamiltonian. Second, one
needs to evaluate the frequency-dependent screened Coulomb
interaction, Eq. (7). In the following, we discuss practical
ways to address the first aspect in Sec. II C and the second
aspect in Sec. II D.

C. Dynamical eigenvalue problem

A dynamical eigenvalue problem needs to be solved for the
frequency-dependent BSE Hamiltonian in Eq. (6),

H̃ (ω)A�(ω) = E�(ω)A�(ω), (9)

to obtain the frequency-dependent excitonic eigenvalues and
eigenfunctions. Different from the static case, where this set
of solutions directly provides excitation energies, in the case
of dynamical screening, one needs to find the solution of [18]

E�(ω) = h̄ω. (10)

Physically, this represents the condition where the energy of
excitonic state � equals the energy of the absorbed photon and
it amounts to identifying the state � that was computed using
the corresponding photon frequency. In the following, we
discuss three different approaches to accomplish this: Exact
diagonalization of the dynamical Hamiltonian, a perturbative
treatment of the problem [4], and an effective static screening
approximation [30,41].

In the exact diagonalization approach, the excitation en-
ergy E�(ω) can be obtained by sampling the frequency ω on
a grid and solving one eigenvalue problem at each frequency
point. Subsequently, Eq. (10) can be solved via interpolation
of this data or using the nearest data point on the frequency
grid that minimizes E�(ω) − h̄ω. Compared to the static BSE,
this increases the complexity by at least a factor of N , where N
is the number of frequency sampling points. We note that this
computational cost can be somewhat mitigated using efficient
solvers of eigenvalue problems, such as the ChASE library

[51], that we recently interfaced with our BSE code [52],
demonstrating speedups on the order of a factor of five in
solving the static BSE.

The perturbative approach to solving Eq. (10) was pro-
posed by Rohlfing and Louie [4]. It treats the dynamical effect
of the screened Coulomb potential as a first-order perturbation
to the solutions of the static BSE. The solutions E sta

� of the
static eigenvalue problem for each excitonic state � are used
as the input frequency h̄ω in Eq. (7) to the dynamical screen-
ing function W̃ (ω). Next, the difference between the resulting
approximated dynamical screening potential and the static
screening potential W̃ (E sta

� ) − W sta is treated as a first-order
perturbation, so that the solution for each state � becomes

Edyn
� ≈ E sta

� + 〈A�|W̃ (
E sta

�

) − W sta|A�〉, (11)

where |A�〉 are the eigenfunctions of the static BSE Hamilto-
nian (5).

Validity of the perturbative treatment requires two condi-
tions: (1) E sta

� is reasonably close to the true solution such that
evaluating W̃ (ω) at h̄ω = E sta

� is close to the true dynamical
screening function for each state �, and (2) the difference
W̃ (E sta

� ) − W sta is small, so that dynamical effects can be
considered as a first-order perturbation. Reference [4] recom-
mends to iterate several times and reports quick convergence,
and, indeed, we verified that the solution converges within
two to three steps. Instead of solving the entire problem on
a frequency grid, this approach focuses on a few specific exci-
tonic states and only updates the energy of those states based
on the static solutions, leaving the excitonic wave functions
unchanged. This provides a fast route to solving the dynamical
problem especially when only a few excitonic states, e.g., the
lowest ones, are of interest. However, its validity needs to be
examined for systems where dynamical effects are significant,
since in this case, the solutions obtained through the static
approximation can differ significantly from the dynamic ones.

As can be seen in Eq. (11), the perturbative approach re-
quires evaluating the screened interaction W̃ (E sta

� ) for each
state � of interest. This is not practical for simulations of
spectra, where a large number of eigenstates N� is required.
In this work, we instead group the E sta

� into energy intervals
of 0.3 eV which allows us to reduce the number of times
we need to evaluate the screening matrix W̃ (E sta

� ) from N�

to the number of chosen frequency intervals. For eigenstate
� with an eigenvalue E sta

� in a given interval, the dynamical
screening function is approximated by the lower end of the
interval. In Sec. IV of this work, the number of screening
potential evaluations needed to compute dynamical correc-
tions to the energies and spectra is reduced from 104 to
about 30.

In addition, we note that in practice even for static screen-
ing the full diagonalization is usually avoided, using, e.g., a
time propagation approach [53,54]. This would be feasible in
the context of this work only when using the effective static
approach discussed in the following. In this approach, effec-
tive, static screening can be adopted to obtain an approximate
solution of Eq. (10). This bypasses the frequency-dependent
eigenvalue problem entirely but instead focuses on ap-
proximating Eq. (7) by replacing the energy difference
terms Ec′k′ − Evk − h̄ω and Eck − Ev′k′ − h̄ω by an effective,
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constant exciton-binding energy, which is independent of the
energies of the electronic states and h̄ω. This reduces the
dynamical screening problem to an effectively static problem
since the two terms in the brackets of Eq. (7) reduce to one
single value, that can be chosen as the binding energy of the
lowest excitonic state

Eb = Eg − E sta
�=0, (12)

where Eg is the band gap without considering excitonic
effects. As a result, this approach replaces the dynamical
screening function with an effective static screening function,
that takes the exciton binding energy of the material explicitly
into consideration and Eq. (7) is simplified to [30]

W̃ eff
cc′,vv′,kk′ = 1

V

∑
q,G,G′

v(
√

|q + G||q + G′|)Bcc′,kk′ (q + G)

× B∗
vv′,kk′ (q + G′)

{
δGG′ +

∫ ∞

0

dh̄ω′

π

× Imε−1(q + G, q + G′, ω′)
2

h̄ω′ + Eb

}
δq,k−k′ .

(13)

The resulting Eq. (13) contains no frequency dependence
anymore since ω′ can be integrated explicitly. This approach
is the cheapest among the three, as it is a modified version
of the static approximation and it has been used to study
effects of free-carrier screening [30] and the screening of
lattice polarizability [41]. In addition, among the three ap-
proaches we introduced, the effective static screening does
not require the excitonic wave function, allowing us to take
advantage of the time propagation approach [53,54] to avoid
the diagonalization of the eigenvalue problem. In Ref. [30],
the authors argue that the process can be repeated several
times to converge the solution. However, we note that it needs
to be tested whether the converged values will match the true
solution of the frequency-dependent BSE.

D. The dynamical screening function

In order to proceed with solving the dynamical eigenvalue
problem, Eq. (9), one needs to compute the frequency-
dependent screened Coulomb interaction, Eq. (7). The major
challenge lies in the frequency integral with respect to
ω′. While it can be evaluated numerically, e.g., within the
random-phase approximation [19,55], this comes with high
computational cost, since one ω′ integral needs to be evaluated

explicitly for each ω and each combination of cvk and c′v′k′,
see Eq. (7).

The integral can be carried out explicitly if an analyt-
ical model function is assumed for the ω′ dependence of
the inverse dielectric matrix. In this work, we pursue that
route and use the generalized plasmon-pole approximation
(PPA) from Hybertsen and Louie [4,40,56] to carry out the
frequency integral. This model expresses the frequency de-
pendent inverse dielectric matrix to be a pole function of the
form

Im ε−1(q + G, q + G′, ω) = A(q + G, q + G′)

× {δ[ω − ω̃(q + G, q + G′)]
− δ[ω + ω̃(q+G, q+G′)]},

(14)

Re ε−1(q + G, q + G′, ω) = 1 + 
2(q + G, q + G′)
ω2 − ω̃2(q + G, q + G′)

.

(15)

The three parameters A(q + G, q + G′), ω̃(q + G, q + G′),
and 
(q + G, q + G′) are given by the following additional
constraints: the Kramers-Kronig relation, the f -sum rule, and
the static inverse dielectric matrix ε−1(q+G, q+G′, ω=0)
[40]. To describe the wave-vector dependence of the static
inverse dielectric matrix we adopt the model from Bech-
stedt et al. [57], which considers only diagonal terms
G = G′. It interpolates between free-electron gas behav-
ior at large q and Thomas-Fermi like behavior at small
q [44,57,58]. The approximation of neglecting local-field
effects in the screening (G = G′) is reasonable in typical
semiconductors [20,57,59]. Whether it can impose problems
for studying dynamical screening effects, e.g., when excitons
become more localized, remains worthwhile exploring in the
future.

With the above constraints the three parameters of the
plasmon-pole model follow as (see the supplemental informa-
tion section B for details of the derivation [45])


(q + G) = ωp, (16)

ω̃(q + G) = ωp[1 − ε−1(q + G, ω = 0)]−1/2, (17)

A(q + G) = −π

2
ωp[1 − ε−1(q + G, ω = 0)]1/2. (18)

Carrying out the frequency integral in Eq. (7) then provides
the dynamical screening potential

W̃cc′,vv′,kk′ (ω) = 1

V

∑
q,G

v(|q + G|)Bcc′,kk′ (q + G)B∗
vv′,kk′ (q + G)

{
1 − h̄ωp

2
[1 − ε−1(q + G, ω = 0)]1/2

×
[

1

h̄ωp(1 − ε−1(q + G, ω = 0))−1/2 + Eck − Ev′k′ − h̄ω

+ 1

h̄ωp(1 − ε−1(q + G, ω = 0))−1/2 + Ec′k′ − Evk − h̄ω

]}
δq,k−k′ . (19)
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In the effective static screening approach, the energy differences in the denominator are replaced by the exciton binding energy,
see Eq. (12), resulting in

W̃ eff
cc′,vv′,kk′ = 1

V

∑
q,G

v(|q + G|)Bcc′,kk′ (q + G)B∗
vv′,kk′ (q + G)

×
{

1 − h̄ωp

2
[1 − ε−1(q + G, ω = 0)]1/2

[
2

h̄ωp(1 − ε−1(q + G, ω = 0))−1/2 + Eb

]}
δq,k−k′ . (20)

The denominators in Eqs. (19) and (20) significantly deter-
mine the nature of screening through the interplay between
the plasma frequency ωp as a characteristic frequency, and
exciton binding, either expressed as the two energy differ-
ences Ec′k′ − Evk − h̄ω and Eck − Ev′k′ − h̄ω in Eq. (19) or
Eb in Eq. (20). The static limit corresponds to negligible
exciton binding compared to the plasma frequency and can
be obtained from Eqs. (19) and (20) by dropping these energy
differences or Eb, respectively. In this case, all terms in the
curly brackets reduce to ε−1(q + G, ω = 0). In bulk semicon-
ductors, plasma frequencies are usually several eV to several
tens of eV and exciton-binding energies are several tens to
a few hundreds of meV, i.e., at least one order of magnitude
smaller, illustrating the validity of the static approximation. In
many low-dimensional or organic semiconductors, however,
the exciton binding energies are relatively large and can be
on the order of 1 eV [33,60,61], rendering the validity of
the static approximation questionable. Furthermore, this illus-
trates, e.g., for the lowest bound excitonic state, that including
electronic screening dynamics effectively reduces screening
compared to the static approximation, leading to stronger ex-
citonic effects. This is because the denominator of Eq. (19)
is larger than when Eb is dropped in the static case. Hence,
dynamical screening is effectively weaker and in the static
approximation screening is always overestimated. Physically,
this can be interpreted as an initially incomplete screening in
the dynamic case, compared to an instantly formed screening
in the static approximation [18].

III. COMPUTATIONAL METHODS

In this work, we compare the three different approaches
to describe screening dynamics, i.e., exact diagonalization,
perturbative treatment, and the effective static screening ap-
proach, for optical spectra and exciton binding energies of
crystalline naphthalene. This material is an organic crys-
tal for which large exciton binding energies of 1.0–1.5 eV
were reported from experiment [33]. We implemented the
three different approaches using the plasmon-pole approx-
imation (PPA), into the BSE implementation discussed in
Refs. [44,58], based on the Vienna ab initio simulation pack-
age [62–64] (VASP).

For naphthalene, we first performed density functional the-
ory [11,12] (DFT) simulations using the generalized-gradient
approximation (GGA) by Perdew, Burke, and Ernzerhof
(PBE) to describe exchange and correlation [65] and the
projector-augmented wave (PAW) scheme [66] to model the
electron-ion interaction. Kohn-Sham states were expanded
into plane waves up to a cutoff energy of 400 eV. We used

lattice constants that were reported from experiment [67]
and relaxed atomic positions until all Hellmann-Feynman
forces were smaller than 5 meV/Å, using the DFT-D2 method
of Grimme [68] to capture Van der Waals corrections. For
these relaxations, the Brillouin zone (BZ) was sampled using
3×5×3 �-centered k points. We verified that the total energy
of the unit cell is converged to better than 1 meV/atom with
these parameters.

For the BSE simulations, we computed the DFT-PBE
electronic structure for the relaxed atomic geometries de-
scribed above and tested convergence with respect to BZ
sampling and BSE cutoff energy, i.e., the energy up to which
noninteracting electron-hole pairs are included in the BSE
Hamiltonian. We did these tests using static screening and
all details can be found in Ref. [45] (see Figs. S4–S6). We
find that, contrary to materials with dispersive valence and
conduction bands such as MgO and ZnO [44,69], the va-
lence and conduction band edges of naphthalene are flat (see
Fig. S1) and the exciton binding energy of naphthalene con-
verges quickly with BZ sampling (see Fig. S5). We obtain
the value of the exciton binding energy by extrapolating to
infinitely dense sampling as discussed in Ref. [44]. Balancing
computational cost and accuracy of the BSE calculations of
optical spectra, we adopted a 5×7×5 k-point grid centered at
the A point of the BZ, to capture the lowest-energy transitions
near that point. We use a BSE cutoff energy of 14 eV to
compute spectra with static screening and compare these to
literature results in Fig. 2. Due to the larger computational
cost of dynamical screening, we reduce the BSE cutoff energy
to 9 eV for investigating dynamical effects, and focus on the
spectra between the onset at 3 eV and up to 5.5 eV. Based on
the convergence tests above, we anticipate that the choice of
the energy cutoff and k-point sampling results in deviations of
about 0.2 eV compared to the converged values, however, we
show in Sec. G of Ref. [45] that the error induces constant
shifts to the predicted exciton binding energy, and we do
not expect them to affect our analysis of dynamical screen-
ing effects. In all spectra calculations, a Lorentzian life-time
broadening of 0.1 eV is used. In the static model dielectric
function, a high-frequency dielectric constant of 2.35 is used,
and is chosen based on the experimental value [70,71].

IV. RESULTS AND DISCUSSION

We compute the optical spectra and exciton binding ener-
gies of the organic crystal naphthalene using static screening
in the BSE and the three different approaches to dynami-
cal electronic screening discussed above. The unit cell of
naphthalene is shown in Fig. 1 and consists of two units of

235205-6



EFFECT OF DYNAMICAL SCREENING IN THE … PHYSICAL REVIEW B 107, 235205 (2023)

FIG. 1. Monoclinic naphthalene (C10H8) viewed from the crys-
talline b direction (left) and the crystalline c direction (right). Black
spheres represent carbon atoms and white spheres represent hy-
drogen atoms. The unit cell consists of two conjugated orientated
naphthyl rings. The crystal structure is obtained from Ref. [67] and
we subsequently fully relaxed all atomic positions.

double carbon rings with conjugated orientation. This system
is an ideal test bed to systematically study dynamical effects
in the description of electronic screening, since it exhibits
exciton binding energies on the order of 1 eV [33,72,73],
which is an order of magnitude larger than exciton binding
energies of typical bulk inorganic semiconductors of several
10 meV [74–76]. Using the independent-particle approach
in VASP and the integral from the f -sum rule without con-
sidering the electron-hole interaction, we compute a plasma
frequency of 17.9 eV, which is similar to bulk inorganic ma-
terials. The closer the exciton binding energy is to the plasma
frequency, the more important are dynamical effects for elec-
tronic screening, and this is what we expect for naphthalene
in this work.

A. Independent quasiparticle approximation and static BSE

We first compute the optical spectrum of naphthalene us-
ing the independent-quasiparticle approximation within the
GGA + � approach as well as the static BSE, see Fig. 2. In

0 1 2 3 4 5 6 7 8
Photon energy h_ ω (eV)

0
2
4
6
8

10
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2
4
6
8

10

Im
ε yy

(ω
)

This work
Puschnig et al.
Hummer et al.

GGA+Δ

Static BSE

FIG. 2. Imaginary part of the εyy ‖ b component of the dielectric
tensor, calculated without electron-hole interaction (top) and from
solving the BSE with statically screened electron-hole interaction
(bottom). We used the high-frequency dielectric constant from ex-
periment [70,71], ε∞ = 2.35, and a scissor shift of � = 1.55 eV. The
shape of our spectra agrees very well with data by Puschnig et al. [77]
and Hummer et al. [33].

this work, we focus on optical spectra and exciton binding
energy for the y polarization, i.e., the εyy component of the
dielectric tensor parallel to the crystalline b direction, since
for this direction the lowest-energy excitonic eigenstates were
reported [33,72]. Our calculated value for the GGA band gap,
EGGA

g = 3.12 eV, agrees well with an earlier result of 3.10 eV
[72]. We use a scissor shift of � = 1.55 eV so that the first
bright peak is at the same position at 4.8 eV as reported from
quasiparticle calculations [33]. Details of the band structure
can be found in Fig. S1 of Ref. [45]. The upper panel of
Fig. 2 shows good agreement between our GGA + � result
and a spectrum from the literature [33,77]. We notice that
some differences are observed at the peak around 8 eV, as the
height of the peak from our calculation is slightly larger. We
also verified that our results agree very well with a GGA + �

spectrum using a broadening of 0.05 eV [72], if we adopt the
same broadening (see Ref. [45] Sec. D).

When including the electron-hole interaction by solving a
BSE with static screening, we find strong excitonic effects
in naphthalene and indeed report an exciton-binding energy
of 1.06 eV. The difference between the first main peak with
(BSE) and without (GGA + �) excitonic effects, see upper
and lower panel of Fig. 2, is used to obtain the value of the
exciton binding energy, similar as in Ref. [33]. Comparing
our static BSE spectrum with earlier results in the literature
in the lower panel of Fig. 2 shows reasonable agreement also
of the overall spectral shape [33,77]. We note that Puschnig
et al. used a broadening of 0.2 eV [77], possibly explaining
some of the deviations with respect to our data. In addition,
our predicted exciton binding energy is slightly larger than
0.9 eV reported in Ref. [33], and correspondingly, the onset
of our spectrum in Fig. 2 appears at slightly lower energy.
We attribute this to the different approaches of describing the
wave-vector dependence of the screening in the static BSE.
While our work uses the Bechstedt model and the exper-
imental high-frequency dielectric constant of 2.35 [70,71],
Refs. [33,77] use the RPA based on the Kohn-Sham eigenval-
ues [78], and the corresponding dielectric constant computed
within the independent particle approximation is reported in
Ref. [77] as 3.8.

B. Dynamical electronic screening

We now compare the spectra we computed from solutions
of the BSE that account for electronic screening dynamics via
the three different approaches discussed in Sec. II. First, we
compute excitonic eigenvalues E� via direct diagonalization
by sampling a frequency grid to solve Eq. (10). Figure 3
shows this sampling of the frequency range of interest with
a spacing of 0.3 eV and our computed solutions for the ex-
citonic eigenvalues E�. This figure shows that there is no
complicated dependence on frequency, illustrating that a sim-
ple interpolation scheme is appropriate and our frequency
spacing of 0.3 eV is sufficient. We further verified this by
calculating spectra using different samplings, and the results
can be found in Fig. S3 of Ref. [45]. Here we use a nearest
neighbor approximation, i.e., for each state, the solution that
is the closest to the E�(ω) = h̄ω line is adopted as the solution
of the dynamical problem for that state. This allows us to
also compute optical spectra, which requires excitonic wave
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FIG. 3. Frequency dependent exciton eigenvalues E�(ω) for
excitonic states �, obtained using exact diagonalization of the
Hamiltonian in Eq. (9). We show various randomly selected states to
cover a range of exciton energies. We find the solution of E�(ω) =
h̄ω (black dashed line) via a nearest neighbor approximation (see
text). The solution using the standard static approximation for the
lowest excitonic state (� = 1) is marked with the horizontal red-
dashed line.

functions that would be more challenging to obtain in an
interpolation scheme. We estimate from Fig. 3 that the nearest
neighbor approximation does not cause an error in the solution
of more than 0.01 eV. Nevertheless, Fig. 3 illustrates, e.g., for
the � = 1 state, that an exciton binding energy of 1.49 eV
compared to the plasma frequency of 17.9 eV is affected
by the frequency dependence due to electronic screening
dynamics.

In the upper two panels of Fig. 4, we compare the opti-
cal spectra from the exact diagonalization of the dynamical

2 3 4 5
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4
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4
0
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4

Im
 ε
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)

0
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4

3.64 eV

E(sta)=3.78 eV

3.66 eV

Exact diag.

Perturb.
Amplified shoulder

No redshift

3.67 eVEffective

3.68 eVEffective

Eb=1.14 eV

Eb=1 eV

Redshift

Redshift

Redshift

FIG. 4. Comparison of εyy from the static BSE (black solid lines)
with the different approaches to include dynamical screening. Red
shows the exact diagonalization and blue results from the perturba-
tive approach. Effective static screening using Eb = 1.14 eV (orange)
and Eb = 1 eV (green) is also shown. All curves use a scissor shift of
1.55 eV. The positions of the first major peak are highlighted in the
figure with vertical dashed lines. We also note that an excitonic state
is visible when adopting the perturbative approach, that is dark in all
other cases.

problem and the perturbative approach to our static BSE re-
sult. This comparison shows that the perturbative treatment
works well for the lowest-energy major peak predicted by
the static approximation at 3.78 eV, as it predicts a 0.12 eV
redshift from the peak with static screening, compared to a
redshift of 0.14 eV when the exact diagonalization approach is
used. Figure 4 also shows a redshift of all spectra that include
screening dynamics relative to the static case, which confirms
the expected effective reduction of screening when dynamics
is included, as discussed in Sec. II D.

Further comparison shows that the perturbative treatment
results in a magnified excitonic shoulder at a photon energy
of 3.25 eV, see Fig. 4, which neither of the other techniques
shows. We find a corresponding excitonic eigenvalue using
all three approximations to dynamical screening, however,
its oscillator strength is much smaller in the case of exact
diagonalization and for the effective static treatment of screen-
ing. Inclusion of screening dynamics reduces the oscillator
strength of the underlying excitonic states. The perturbative
approach struggles with this, as it uses unchanged excitonic
eigenfunctions of the static simulation. In addition, at higher
energies beyond about 4.2 eV, we see that the perturbative
treatment strongly resembles the static result, while all other
approaches yield an overall redshift and an enhancement of
the shoulder near 5 eV (see Fig. 4).

Finally, we investigate the effective static screening ap-
proximation, see Eq. (20). In Fig. 4, we show results for
effective static screening using the exciton-binding energy
calculated from the static screening approximation (1.0 eV)
and that from exact diagonalization (1.14 eV), leading to
dynamical screening corrections of 0.10 and 0.11 eV, re-
spectively. The lower two panels of Fig. 4 show that both
cases underestimate the correction due to dynamical screen-
ing compared to the exact diagonalization. The position of
the first peak is about 0.03–0.04 eV higher in energy, i.e.,
closer to the static approach, corresponding to a 28.5% and
21.4% change of the dynamical correction to the exciton
binding energy when compared to exact diagonalization.
Overall, however, effective static screening describes spec-
tra better than the perturbative approach especially at higher
energies as the perturbative treatment fails to capture the
redshift due to dynamical effects qualitatively. As a re-
sult, we recommend the effective static approximation over
the perturbative approach to include dynamical screening
when optical spectra over a range of photon energies are
considered.

We provide an analysis to understand the difference we
observed above between the different approaches: including
screening dynamics either via exact diagonalization or via the
effective static screening approach changes how individual
single-particle Kohn-Sham states are combined into excitonic
wave functions. This is because the matrix elements of the
BSE Hamiltonian change and the eigenstate of that Hamil-
tonian determines the exciton wave function. Such a change
of single-particle KS contributions can affect how strongly
or weakly a certain feature appears in the spectrum. In the
case of the perturbative approach, see Eq. (11), the exciton
wave functions themselves are kept constant and mixing of
individual KS states is not changed, relative to static screening
BSE simulations.
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We note that Hummer et al. [33] report a minor un-
derestimation of the exciton-binding energy compared to
experiment. Their theoretical value is 0.9 eV, while experi-
mental results are reported as 1.0–1.5 eV [33]. We find that the
reduction of the screening due to dynamical effects provides
an additional redshift to the spectra, putting the predicted
exciton-binding energy closer to the range of the experimental
values. This is additional evidence that electronic dynamical
screening effects need to be taken into consideration for ac-
curate modeling of these systems where large exciton-binding
energies are observed. We note that while lowest singlet ex-
citation energies reported from experiment are reasonably
consistent (3.9–4.0 eV [79–82]), a variation of the reported
electronic gap (5.0–5.4 eV [79,83–85]) is seen, due to the
models used to extract the gap from photoemission experi-
ments. This causes a variation of the estimated binding energy
from experiments on the order of 0.5 eV. Even if we exclude
the electronic band gap of 5.0 eV reported in Ref. [79] from
observations of the change in carrier generation, the remaining
references still show a variation of 5.1–5.4 eV with an error
bar on the order of 0.2 eV due to uncertainty in empirical
parameters [85], resulting in an estimated exciton-binding
energy of 1.2–1.5 eV.

C. Influence of the plasmon-pole model

As discussed in Sec. II D, in this work a plasmon-pole
model is adopted to derive Eq. (19), which requires the plasma
frequency ωp as an input to calculate the screened Coulomb
potential. We compute ωp = 17.9 eV within independent-
particle approximation, i.e., without considering the electron-
hole interaction, through integrating the imaginary part of the
dielectric function using the VASP code and averaging over
the Cartesian coordinates. It has been found previously that
the enforcement of the f -sum rule of the HL PPM model can
overestimate the energy of the pole of the dielectric function,
e.g., by about 10% for elemental carbon [86].

Hence, in the following we examine the influence of the
plasmon-pole frequency ωp on our results and varied ωp in
a ∼10% range from the calculated value, between 16 and
19 eV, to examine the influence on resulting spectra and
exciton-binding energy. From the spectra shown in Fig. 5
we see that with increasing plasma frequency from 16 to
19 eV, the first major peak is slightly blue shifted because
the predicted red shift due to dynamical screening correc-
tions is increased from 0.14 to 0.16 eV, i.e., by about 15%.
This reduction of the dynamical correction is expected, since
increasingly large ωp corresponds more closely to the static
screening case, as discussed in Sec. II D, reducing dynamical
corrections and increasing the strength of dielectric screening.
However, the influence is not substantial around the plasma
frequency of interest in this work. Overall, we found that the
potential overestimation of the pole energy due to the choice
of the plasmon-pole model, does not qualitatively affect the
significance of dynamical effects. We also note that the de-
pendence on the plasmon-pole energy is similar to that of the
effective static method and a similar trend is expected in this
case.

Finally, we note that for naphthalene, the exciton binding
energy is only 5% of the plasma frequency. However, the ratio
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FIG. 5. Imaginary part of the εyy ‖ b component of the dielectric
tensor from static BSE (black solid line) and independent quasipar-
ticle approximation (GGA+scissor, black dashed line) are compared
to exact diagonalization results computed using different values of
the plasmon frequency (red shaded). We show that increasing ωp

from 16 to 19 eV changes the prediction of the correction on the
exciton binding energy due to dynamical screening effects from 0.16
to 0.14 eV.

between exciton binding energy and characteristic frequency
that determines screening dynamics is much larger in other
important applications of the BSE technique. For example,
in the case of phonon screening in polar materials, the char-
acteristic frequency scale to compare to is that of phonon
frequencies, instead of the plasma frequency [41]. In this case,
the exciton-binding energy is on the same order compared
to the characteristic frequency, and screening dynamics is
expected to be important for an accurate description of optical
properties.

V. CONCLUSION

We examined the effects of electronic dynamical screening
of the electron-hole interaction when solving the Bethe-
Sapleter equation of the optical polarization function for a
naphthalene organic crystal. By adopting the Shindo approxi-
mation and a plasmon-pole model, the BSE can be written as a
frequency-dependent eigenvalue problem. We compared three
different ways of addressing this dynamical problem, i.e.,
exact diagonaliztion of the frequency-dependent BSE Hamil-
tonian, perturbative treatment of the static eigenstates, and
an effective static approximation. The exact-diagonalization
approach requires solving the BSE Hamiltonian at numerous
frequencies to obtain the eigenenergies and eigenstates. The
perturbative approach requires diagonalization of the BSE
Hamiltonian in the static approximation in order to obtain the
excitonic wave functions. Meanwhile, the effective screening
approach bears the same cost of the standard approach of
solving the BSE within the static approximation.

We show that for naphthalene, all three methods induce a
∼15% correction of the exciton binding energy, predicted to
be around 1 eV by the standard static approximation. While
the exact diagonalization constitutes a reference case in this
work, it comes at high computational cost that renders this
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approach unfeasible for computing spectra. The perturbative
treatment is a decent alternative that does not require full
solution of multiple BSE Hamiltonians while providing good
qualitative estimates of binding energies of the lowest exci-
tonic states. Finally, we show that for spectra, the effective
static screening approach is well suited and numerically effi-
cient, possible allowing application to complex materials. The
results for naphthalene are in good agreement with experi-
ments. We also note that these insights will have implications
when lattice screening is considered, since then the charac-
teristic frequency of phonons is close to the exciton-binding
energy, likely exacerbating the importance of screening dy-
namics. In this case, the validity of the perturbative treatment
and effective screening approach is expected to be more ques-
tionable, and requires further investigation. To this end, our
findings suggest that dynamical screening effects in these
contexts remain a subject of future study.

ACKNOWLEDGMENTS

We thank Felipe H. da Jornada, Steven G. Louie, and Em-
manouil Kioupakis for fruitful discussions. This material is
based upon work supported by the National Science Founda-
tion under Grant No. DMR-1555153. This research is part of
the Blue Waters sustained-petascale computing project, which
is supported by the National Science Foundation (Awards
OCI-0725070 and ACI-1238993) and the state of Illinois.
Blue Waters is a joint effort of the University of Illinois at
Urbana-Champaign and its National Center for Supercomput-
ing Applications. This work made use of the Illinois Campus
Cluster, a computing resource that is operated by the Illinois
Campus Cluster Program (ICCP) in conjunction with the Na-
tional Center for Supercomputing Applications (NCSA) and
which is supported by funds from the University of Illinois at
Urbana-Champaign.

[1] M. Cardona and M. L. W. Thewalt, Isotope effects on the optical
spectra of semiconductors, Rev. Mod. Phys. 77, 1173 (2005).

[2] J. Phillips, The Fundamental Optical Spectra of Solids
(Academic Press, London, 1966), pp. 55–164.

[3] Z. H. Levine and D. C. Allan, Linear Optical Response
in Silicon and Germanium Including Self-Energy Effects,
Phys. Rev. Lett. 63, 1719 (1989).

[4] M. Rohlfing and S. G. Louie, Electron-hole excitations and
optical spectra from first principles, Phys. Rev. B 62, 4927
(2000).

[5] D. M. Roundhill and J. P. Fackler Jr, Optoelectronic Properties
of Inorganic Compounds (Springer Science & Business Media,
Berlin, 1999).

[6] C. Liu and A. J. Bard, Optoelectronic properties and memories
based on organic single-crystal thin films, Acc. Chem. Res. 32,
235 (1999).

[7] P. M. Zimmerman, F. Bell, D. Casanova, and M. Head-Gordon,
Mechanism for singlet fission in pentacene and tetracene: From
single exciton to two triplets, J. Am. Chem. Soc. 133, 19944
(2011).

[8] X. Wang, X. Liu, C. Cook, B. Schatschneider, and N. Marom,
On the possibility of singlet fission in crystalline quaterrylene,
J. Chem. Phys. 148, 184101 (2018).

[9] J. L. Brédas and R. R. Chance, Conjugated Polymeric Ma-
terials: Opportunities in Electronics, Optoelectronics, and
Molecular Electronics (Springer Science & Business Media,
Berlin, 2012), Vol. 182.

[10] C. W. Tang, Two-layer organic photovoltaic cell, Appl. Phys.
Lett. 48, 183 (1986).

[11] W. Kohn and L. J. Sham, Self-Consistent Equations Includ-
ing Exchange and Correlation Effects, Phys. Rev. 140, A1133
(1965).

[12] P. Hohenberg and W. Kohn, Inhomogeneous Electron Gas,
Phys. Rev. 136, B864 (1964).

[13] C. C. Kim, J. W. Garland, H. Abad, and P. M. Raccah, Modeling
the optical dielectric function of semiconductors: Extension of
the critical-point parabolic-band approximation, Phys. Rev. B
45, 11749 (1992).

[14] Z. H. Levine and S. G. Louie, New model dielectric function
and exchange-correlation potential for semiconductors and in-
sulators, Phys. Rev. B 25, 6310 (1982).

[15] M. Dadsetani, H. Nejatipour, and A. Ebrahimian, Ab initio study
of the optical properties of crystalline phenanthrene, including
the excitonic effects, J. Phys. Chem. Solids 80, 67 (2015).

[16] X. Liu, R. Tom, X. Wang, C. Cook, B. Schatschneider, and
N. Marom, Pyrene-stabilized acenes as intermolecular singlet
fission candidates: Importance of exciton wave-function con-
vergence, J. Phys.: Condens. Matter. 32, 184001 (2020).

[17] X. Wang, T. Garcia, S. Monaco, B. Schatschneider, and N.
Marom, Effect of crystal packing on the excitonic properties
of rubrene polymorphs, CrystEngComm 18, 7353 (2016).

[18] F. Bechstedt, Many-Body Approach to Electronic Excitations
(Springer, Berlin, 2016).

[19] G. Onida, L. Reining, and A. Rubio, Electronic excita-
tions: density-functional versus many-body Green’s-function
approaches, Rev. Mod. Phys. 74, 601 (2002).

[20] A. Schleife, C. Rödl, F. Fuchs, J. Furthmüller, and F. Bechstedt,
Optical and energy-loss spectra of MgO, ZnO, and CdO from
ab initio many-body calculations, Phys. Rev. B 80, 035112
(2009).

[21] A. Schleife and F. Bechstedt, Ab initio description of quasi-
particle band structures and optical near-edge absorption of
transparent conducting oxides, J. Mater. Res. 27, 2180 (2012).

[22] K. Kang, A. Kononov, C.-W. Lee, J. A. Leveillee, E. P. Shapera,
X. Zhang, and A. Schleife, Pushing the frontiers of modeling
excited electronic states and dynamics to accelerate materials
engineering and design, Comput. Mater. Sci. 160, 207 (2019).

[23] T. Sander, E. Maggio, and G. Kresse, Beyond the Tamm-
Dancoff approximation for extended systems using exact
diagonalization, Phys. Rev. B 92, 045209 (2015).

[24] J. Deslippe, G. Samsonidze, D. A. Strubbe, M. Jain, M. L.
Cohen, and S. G. Louie, BerkeleyGW: A massively paral-
lel computer package for the calculation of the quasiparti-
cle and optical properties of materials and nanostructures,
Comput. Phys. Commun. 183, 1269 (2012).

[25] D. Sangalli, A. Ferretti, H. Miranda, C. Attaccalite, I. Marri,
E. Cannuccia, P. Melo, M. Marsili, F. Paleari, A. Marrazzo, G.
Prandini, P. Bonfà, M. O. Atambo, F. Affinito, M. Palummo,
A. Molina-Sánchez, C. Hogan, M. Grüning, D. Varsano, and
A. Marini, Many-body perturbation theory calculations us-
ing the Yambo code, J. Phys.: Condens. Matter 31, 325902
(2019).

235205-10

https://doi.org/10.1103/RevModPhys.77.1173
https://doi.org/10.1103/PhysRevLett.63.1719
https://doi.org/10.1103/PhysRevB.62.4927
https://doi.org/10.1021/ar980031n
https://doi.org/10.1021/ja208431r
https://doi.org/10.1063/1.5027553
https://doi.org/10.1063/1.96937
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1103/PhysRev.136.B864
https://doi.org/10.1103/PhysRevB.45.11749
https://doi.org/10.1103/PhysRevB.25.6310
https://doi.org/10.1016/j.jpcs.2014.11.015
https://doi.org/10.1088/1361-648X/ab699e
https://doi.org/10.1039/C6CE00873A
https://doi.org/10.1103/RevModPhys.74.601
https://doi.org/10.1103/PhysRevB.80.035112
https://doi.org/10.1557/jmr.2012.147
https://doi.org/10.1016/j.commatsci.2019.01.004
https://doi.org/10.1103/PhysRevB.92.045209
https://doi.org/10.1016/j.cpc.2011.12.006
https://doi.org/10.1088/1361-648X/ab15d0


EFFECT OF DYNAMICAL SCREENING IN THE … PHYSICAL REVIEW B 107, 235205 (2023)

[26] C. Vorwerk, B. Aurich, C. Cocchi, and C. Draxl, Bethe–Salpeter
equation for absorption and scattering spectroscopy: Implemen-
tation in the exciting code, Electron. Struct. 1, 037001 (2019).

[27] V. Blum, R. Gehrke, F. Hanke, P. Havu, V. Havu, X. Ren, K.
Reuter, and M. Scheffler, Ab initio molecular simulations with
numeric atom-centered orbitals, Comput. Phys. Commun. 180,
2175 (2009).

[28] M. Giantomassi, M. Stankovski, R. Shaltaf, M. Grüning, F.
Bruneval, P. Rinke, and G.-M. Rignanese, Electronic properties
of interfaces and defects from many-body perturbation theory:
Recent developments and applications, Phys. Status Solidi B
248, 275 (2011).

[29] D. Y. Qiu, F. H. da Jornada, and S. G. Louie, Screening
and many-body effects in two-dimensional crystals: Monolayer
MoS2, Phys. Rev. B 93, 235435 (2016).

[30] S. Gao, Y. Liang, C. D. Spataru, and L. Yang, Dynamical
excitonic effects in doped two-dimensional semiconductors,
Nano Lett. 16, 5568 (2016).

[31] B. Zhu, X. Chen, and X. Cui, Exciton binding energy of mono-
layer WS2, Sci. Rep. 5, 9218 (2015).

[32] M. M. Ugeda, A. J. Bradley, S. Shi, H. Felipe, Y. Zhang,
D. Y. Qiu, W. Ruan, S. Mo, Z. Hussain, Z. Shen et al., Giant
bandgap renormalization and excitonic effects in a monolayer
transition metal dichalcogenide semiconductor, Nat. Mater. 13,
1091 (2014).

[33] K. Hummer and C. Ambrosch-Draxl, Oligoacene exciton bind-
ing energies: their dependence on molecular size, Phys. Rev. B
71, 081202(R) (2005).

[34] X. Leng, H. Yin, D. Liang, and Y. Ma, Excitons and
Davydov splitting in sexithiophene from first-principles many-
body Green’s function theory, J. Chem. Phys. 143, 114501
(2015).

[35] X. Blase, I. Duchemin, and D. Jacquemin, The Bethe–Salpeter
equation in chemistry: Relations with TD-DFT, applications
and challenges, Chem. Soc. Rev. 47, 1022 (2018).

[36] K. Shindo, Effective electron-hole interaction in shallow exci-
tons, J. Phys. Soc. Jpn. 29, 287 (1970).

[37] Y. Ma, M. Rohlfing, and C. Molteni, Excited states of bio-
logical chromophores studied using many-body perturbation
theory: Effects of resonant-antiresonant coupling and dynam-
ical screening, Phys. Rev. B 80, 241405(R) (2009).

[38] B. Baumeier, D. Andrienko, Y. Ma, and M. Rohlfing, Excited
states of Dicyanovinyl-Substituted oligothiophenes from Many-
Body green’s functions theory, J. Chem. Theory Comput. 8, 997
(2012).

[39] Y. Ma, M. Rohlfing, and C. Molteni, Modeling the excited states
of biological chromophores within many-body green’s function
theory, J. Chem. Theory Comput. 6, 257 (2010).

[40] M. S. Hybertsen and S. G. Louie, Electron correlation in
semiconductors and insulators: Band gaps and quasiparticle
energies, Phys. Rev. B 34, 5390 (1986).

[41] M. R. Filip, J. B. Haber, and J. B. Neaton, Phonon Screening of
Excitons in Semiconductors: Halide Perovskites and Beyond,
Phys. Rev. Lett. 127, 067401 (2021).

[42] L. Hedin, New method for calculating the one-particle
Green’s function with application to the electron-gas problem,
Phys. Rev. 139, A796 (1965).

[43] G. Strinati, Effects of dynamical screening on resonances at
inner-shell thresholds in semiconductors, Phys. Rev. B 29, 5718
(1984).

[44] F. Fuchs, C. Rödl, A. Schleife, and F. Bechstedt, Efficient
O(N2) approach to solve the Bethe-Salpeter equation for ex-
citonic bound states, Phys. Rev. B 78, 085103 (2008).

[45] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.107.235205 for information regarding to
the derivation and simulation in this article. The supplemental
material also contains Refs. [18,36] in Sec. A, Refs. [40,87–89]
in Sec. B, Refs. [67,72,90,91] in Sec. C, Refs. [33,72] in Sec.
D, and Ref. [44] in Sec. G.

[46] F. Bechstedt, R. Endeblein, and M. Koch, Theory of core exci-
tons in semiconductors, Phys. Status Solidi B 99, 61 (1980).

[47] B. Scharf, D. Van Tuan, I Žutić, and H. Dery, Dynamical
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