
Solving the Bethe-Salpeter equation on massively parallel architectures

Xiao Zhanga,∗∗, Sebastian Achillesb,c, Jan Winkelmannc, Roland Haasd, André Schleifed,e,f,∗∗, Edoardo Di
Napolib,∗

aDepartment of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
bJülich Supercomputing Centre, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52425 Jülich, Germany.

cRWTH Aachen University, Aachen Institute for Advanced Study in Computational Engineering Science, Schinkelstr. 2, 52062
Aachen, Germany.

dNational Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
eDepartment of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.

fMaterials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.

Abstract

The last ten years have witnessed fast spreading of massively parallel computing clusters, from leading super-
computing facilities down to the average university computing center. Many companies in the private sector
have undergone a similar evolution. In this scenario, the seamless integration of software and middleware
libraries is a key ingredient to ensure portability of scientific codes and guarantees them an extended lifetime.
In this work, we describe the integration of the ChASE library, a modern parallel eigensolver, into an existing
legacy code for the first-principles computation of optical properties of materials via solution of the Bethe-
Salpeter equation for the optical polarization function. Our numerical tests show that, as a result of integrating
ChASE and parallelizing the reading routine, the code experiences a remarkable speedup and greatly improved
scaling behavior on both multi- and many-core architectures. We demonstrate that such a modernized BSE
code will, by fully exploiting parallel computing architectures and file systems, enable domain scientists to
accurately study complex material systems that were not accessible before.

Keywords: Eigensolver, exciton Hamiltonian, parallel computing, high-performance computing, code
modernization

1. Introduction

As the size of massively parallel computing clus-
ters is advancing towards the exascale regime, uti-
lizing the great power of such clusters for scientific
applications is a very important task. In the last
decade, modernizing domain-specific software by im-
proving its parallelism and efficiency has grown into a
mainstream activity in many fields of computational
scientific research. Co-design and portability is play-
ing an ever increasing role in coordinating the effort

∗Principal corresponding author
∗∗Corresponding author

Email addresses: xzhng125@illinois.edu (Xiao Zhang),
s.achilles@fz-juelich.de (Sebastian Achilles),
winkelmann@aices.rwth-aachen.de (Jan Winkelmann),
rhaas@ncsa.illinois.edu (Roland Haas),
schleife@illinois.edu (André Schleife),
e.di.napoli@fz-juelich.de (Edoardo Di Napoli)

in pushing the development of new hardware, efficient
middleware, such as numerical libraries, and their use
to run massively parallelized simulations [1, 2, 3, 4].
In this paper, we present a notable example of such
an effort. We describe how the initialization of a large
and dense Hermitian eigenproblem and the solution
for a small portion of its spectrum are the two ma-
jor bottlenecks in the parallel execution of an exist-
ing code [5, 6] for solving the Bethe-Salpeter equation
(BSE) [7, 8]. We illustrate how we improve the par-
allel I/O and integrate a modern highly parallelized
solver—the Chebyshev Accelerated Subspace Itera-
tion Eigensolver (ChASE) [9]—into the solution of the
BSE. Besides increased performance and parallelism,
we demonstrate that our implementation allows the
code to tackle physical problems that could not be
addressed before.

In the context of this work, the solution of the
BSE equation is used to study the response of a ma-

Preprint submitted to Elsevier June 16, 2020

ar
X

iv
:2

00
6.

08
49

8v
1

 [
cs

.C
E

]
 1

5
Ju

n
20

20

terial to an external electromagnetic field—including
visible light—and in so doing derive the material op-
tical properties. Accurate and predictive modeling
of optical response is important, for instance, to un-
derstand the functionality of optoelectronic devices,
whose applications are directly related to light ab-
sorption, reflection, and transmission. For instance,
creation or separation of excitons is an important pro-
cess in photovoltaic cells and light-emitting diodes
[10, 11]. Upon optical excitation via an electromag-
netic field, electrons in a material leave their original
electronic ground state, gain energy, and reach an ex-
cited state. This process leaves a positively charged
hole in the initially occupied valence state. The elec-
trons and holes couple via the Coulomb interaction
as they propagate, rendering this situation an intri-
cate electron-hole quantum mechanical problem that
is much more complicated than the ground state.

While these optical properties can be measured
experimentally by approaches including ellipsometry
[12], photoluminescence [13], and photoemission [14],
accurate predictive studies are crucial in interpreting
experiments and guiding research towards successful
discovery of materials for different applications. Such
predictive in silico studies of optical properties re-
quire a description of excited electronic states and
are carried out using first-principles approaches that
solve approximations to the fundamental Schrödinger
equation in a non-parametric fashion. This would
then allow one to carry out quantitative simulations
to compute material properties. The BSE approach
is based on many-body perturbation theory (MBPT)
and is a common first-principles method to simulate
the underlying optical absorption strength and its en-
ergy dependence accurately.

This Green’s function based approach considers
the external electric field as a perturbation to the elec-
tronic ground state and describes the response of the
electronic system to such a perturbation. Key to the
effectiveness of the approach is that it accounts for
the screened Coulomb interaction between the elec-
tron and the hole, and thus gives an accurate account
of the optical excitation process. However, one of the
main challenges of this approach lies in its extremely
large computational cost which scales as O(n6

e) [15],
where ne is the number of electrons in the material.
Although this can be reduced to O(n3

e) or even O(n2
e)

with advanced solvers [15, 5], studying large or com-
plicated material systems using the BSE approach is
still limited by the large size of the corresponding

eigenproblem, which can go up to O(106).
In the last decade, tier-0 computing clusters have

grown to the point of having hundreds of thousands of
computing cores with peak performances up to hun-
dreds of Peta-FLOPS (Floating Point Operations per
Second). Such massively parallel architectures have
the potential to tackle and solve eigenproblems sig-
nificantly larger than O(106). Therefore, solving for
the largest BSE is quite within the capability of the
available hardware. The real challenge is the ability
of numerical libraries to take advantage of such com-
puting resources and parallelize efficiently over many
thousands of cores for a given eigenproblem.

One of the disadvantages of dense eigenvalue solvers
is that their complexity usually scales as the cubic
power of the matrix size N , while their memory foot-
print grows as N2. This limits the rapid scaling of the
problem size to a large number of computing cores.
On the other hand, in many important cases the BSE
eigenproblem has to be solved for a very small frac-
tion of its spectrum, usually comparable to or less
than 1% of its total size.

Numerical libraries such as ScaLAPACK [16] or
the more modern SLATE [17] maintain a very high
complexity even in those cases where the used algo-
rithm can compute a portion of the spectrum—e.g.
the MRRR eigensolver. Conversely, iterative eigen-
solvers, such as Conjugate Gradient (CG) [18, 19] or
Lanczos [20], could in principle have a lower com-
plexity closer to N2. When implemented in iterative
libraries such as SLEPc [21] or Trillinos [22], these
iterative algorithms pay the price of a smaller arith-
metic intensity. Few operation per byte are executed
with the result that the processor remains idle waiting
for the necessary data to be moved through the mem-
ory hierarchy. The resulting number of operations per
second is rather low with respect to the peak perfor-
mance of the CPU. It is customary to refer to the
executed operations as “slow” FLOPs1.

In this paper we argue that there are alterna-
tives to both high complexity and “slow” FLOPs. We
show how a modern library based on subspace itera-
tion and augmented with Chebyshev filter can be a
winning alternative in cases where a limited portion
of the spectrum of a large dense eigenvalue problem
is desired. The ChASE library has a complexity of
O(mN2), withm proportional to the number of eigen-

1To be distinguished from FLOPS which is a rate of opera-
tions per second

2

pairs sought after. When m� N , ChASE executes a
number of operations to compute the solution that is
substantially smaller than O(N3). At the same time,
most of the ChASE floating point operations (∼ 90%)
are executed using BLAS level 3 subroutines that are
known to extract most of the peak performance out
of any existing parallel computing architecture.

We integrated the highly parallelized ChASE li-
brary with an existing BSE code that has its origin
in the group of Friedhelm Bechstedt at the Friedrich-
Schiller University Jena, where it was developed over
many years [23, 24]. It is closely developed around
the Vienna Ab-Initio Simulation Package (VASP) and
its implementation is described in Refs. [5, 6]. The
integration of ChASE leads to significant improve-
ment when the BSE code is executed on massively
parallel clusters. On a given set of computing re-
sources, the gain in adopting ChASE can exceed a
factor of 4 – 5 in runtime compared to the previously
used CG solver. Comparing the parallel efficiency of
both solvers supports such result: Chase’s efficiency
curve maintains much higher values than CG as the
number of computing nodes increases. In addition,
the higher performance outcome of ChASE allows us
to explore material systems where the previous im-
plementation could not fully unravel the sought after
physics. We illustrate this feature by looking into the
extraction of accurate optical properties of the organic
crystal naphthalene.

The paper is organized as follows. In Sec. 2, we
explain the details of the BSE approach and describe
the challenges of dealing with the BSE problem due to
the necessity of solving large size matrices. In Sec. 3,
we illustrate how such challenges appear in our ex-
isting BSE code, both in the I/O procedure and the
eigensolver and explain the many benefits of the new
I/O routine and the ChASE solver. In Sec. 4, we de-
scribe numerical experiments to measure the strong
and weak scaling and illustrate the power of ChASE in
addressing optoelectronic properties of complex mate-
rials. Section 5 summarizes and concludes the paper.

2. Modeling the Optical Properties of Materi-
als

Solving the Bethe-Salpeter equation (BSE) [7] for
the optical polarization function defines a theoretical
spectroscopy approach that accounts for two-particle,
electron-hole excitations, by including the interaction
between excited electrons and holes using many-body

perturbation theory [8]. It is a first-principles frame-
work used to accurately predict fundamental optical
properties, such as optical absorption spectra includ-
ing excitonic effects and exciton binding energies for
molecules, semiconductors, and insulators. The exci-
ton binding energy is defined as the difference between
interacting and non-interacting electron-hole pair en-
ergies and corresponds to the energy required to sep-
arate a bound electron-hole pair.

The BSE is based on a Green’s function technique
to describe the electron-electron interaction and can
be derived from Hedin’s system of equations [25] via
an expansion of the electronic self energy Σ into in-
creasing orders of the screened electron-electron in-
teraction W [26, 27]. For numerical implementations
the solution of the BSE is transformed into an eigen-
value problem ĤBSE|Λ〉 = EΛ|Λ〉, with the exciton
Hamiltonian [8, 27, 5]

ĤBSE
vck,v′c′k′ = (Eck−Evk)δvv′δcc′δkk′+2v̄v

′c′k′
vck −W v′c′k′

vck .
(1)

Here, the c, v, and k indices label conduction bands,
valence bands, and points in reciprocal space, respec-
tively. Eck andEvk are energies of single-(quasi)particle
electron and hole states and are computed by apply-
ing quasiparticle corrections to Kohn-Sham eigenval-
ues from ground-state density-functional theory [28,
29]. It is common practice to compute these using
one of two approaches: (i) The single-quasiparticle
Green’s function scheme within many-body perturba-
tion theory, known as the GW approximation of the
electronic self energy [25, 8], or (ii) hybrid exchange-
correlation functionals in a generalized Kohn-Sham
scheme [30]. Finally, the unscreened Coulomb inter-
action, denoted by v̄ in Eq. (1), represents short-range
electron-hole exchange to account for local-field ef-
fects. W denotes the screened Coulomb interaction
and requires an approximation and numerical descrip-
tion of dielectric screening.

Solving the BSE numerically is computationally
intensive: The v̄ and W terms involve coupling be-
tween all electron-hole pairs and, as can be seen from
Eq. (1), the rank of the BSE Hamiltonian depends on
the number of (occupied) valence bands, (unoccupied)
conduction bands, and the k-point sampling of recip-
rocal space. Of these, the number of occupied bands is
determined by the number of electrons in the simula-
tion cell for a given material. However, the number of
conduction bands and sampling of reciprocal space are
convergence parameters. While finer reciprocal-space

3

sampling and more conduction bands lead to better
converged solutions of the BSE, this increases the size
of the BSE Hamiltonian. In practice, one examines
the convergence of physical quantities, such as the
exciton-binding energy, with respect to a finite-sized
sampling of reciprocal space. To limit the number
of empty states taken into account for the Hamilto-
nian, a BSE energy cutoff Ecut is introduced such that
only electron-hole pairs with Eck − Evk < Ecut con-
tribute. Effects from electron-hole pairs with higher
energies are typically small due to decreasing coupling
v̄ and W and, therefore, can be neglected. However,
it needs to be tested what value for Ecut achieves a
certain convergence level, e.g. for the exciton-binding
energy.

Even when k-point sampling and BSE energy cut-
off are carefully converged, the resulting eigenproblem
can become very large. Its size increases linearly with
the number of conduction bands, valence bands, and
k-points, as more non-interacting conduction-valence
band pairs are included. Depending on the exact goals
of a simulation, e.g. whether just exciton binding en-
ergies or an entire spectrum are of interest, the typical
test range for the BSE cutoff is on the order of 5 – 20
eV. The precise increase of the rank of the BSE matrix
depends on details of the electronic band structure
of a material, and it typically increases a few orders
of magnitude across this energy range, from several
thousands to close to half a million. For instance, in
previous work we demonstrated that solving for eigen-
problems with size as large as 360,000 is necessary to
obtain reasonable results for the convergence with re-
spect to k-point sampling [5, 31, 32, 33].

As an illustration, we describe below our previ-
ous work on optical properties of a meta-stable ZnO
polymorph [33]. To converge exciton binding energies
with respect to k-point sampling, we follow the pro-
cedure of Ref. [5]: For a number of samplings, the cal-
culated binding energy is plotted as a function of the
inverse number of k-points. The convergence in such a
plot shows linear behavior for very dense k-point sam-
plings, which allows an extrapolation to estimate the
exciton-binding energy at infinitely dense sampling.
For ZnO, this linear regime is not observed until the
inverse number of k-points is smaller than 0.015, cor-
responding to 66.7 k-points in one specific reciprocal-
space direction (see details in Ref. [33]). The smallest
inverse number of k-points that we studied for this
material in Ref. [33], i.e., the densest k-point sam-
pling, is 0.012, corresponding to 83.3 k-points in that

direction. This leads to an eigenvalue problem with
a size of ∼ 200,000 and reading such a matrix and
solving for 100 eigenvalues using the KSCG solver re-
quired 5 – 6 hours using 32 nodes of the BlueWaters
supercomputer. Pushing towards better convergence
with respect to k-point sampling becomes expensive
quickly: Reducing the inverse number of k-points to
0.010 increases the matrix size to ∼ 300,000 and re-
quires more than twice the memory.

The increase in matrix size is even more dramatic
for more complex materials. While the primitive unit
cell of ZnO contains only four atoms and 36 valence
electrons, these numbers can easily be one order of
magnitude larger. For instance, the unit cell of In2O3 [32]
contains 16 In and 24 O atoms, leading to 352 va-
lence electrons. In this case the matrix rank already
amounts to∼ 360,000 using a 5×5×5 k-point grid and
Ecut = 12.5 eV. Hence, computing converged optical
spectra constitutes a serious computational problem,
since it requires a converged k-point grid and a large
BSE energy cutoff. In this case, the BSE cutoff is
determined by the maximum energy in the spectrum,
which is typically much larger than what is needed
to merely converge excitonic effects. We mitigate this
issue by using dense k-point grids for the low energy
range where a smaller BSE cutoff is sufficient, and
more coarse k-point grids for large photon energies,
which requires large BSE cutoffs (see e.g. Ref. [32] for
optical spectra of In2O3). However, for materials with
large unit cells, such as the organic crystal naphtha-
lene C20H16 (see Sec. 4.4), computing exciton binding
energies leads to large matrices on the order of 5×105

when converging Ecut and k-point sampling.
When computing exciton binding energies of a

material, only a very small portion of the lower eigen-
spectrum is needed. This is because studies of exci-
tonic properties typically focus on states at or near the
absorption edge, corresponding to the lowest eigen-
values of the BSE matrix. When only few extremal
eigenpairs are computed, it is customary to use itera-
tive solvers even when the matrix defining the eigen-
problem is dense. Such a choice is in part influenced
by the overall complexity of the iterative algorithm
compared with a so-called direct one (e.g. Multiple
Relatively Robust Representations [34, 35]). In an
iterative solver the total number of floating point op-
erations to reach the solution, is determined by the
complexity of the algorithm per iteration multiplied
by the number of iterations needed to converge. Since
the overall number of iterations is unknown a priori,

4

the choice of iterative vs. direct solver depends on the
properties of the eigenproblem, the parameters of the
solver and its parallel efficiency, and is often a ques-
tion of practice and experience.

In our BSE code we relied on an iterative solver
based on the Kalkreuther-Simma Conjugate-Gradient
(KSCG) algorithm[5, 36] to solve increasingly larger
BSE eigenproblems. While this algorithm presents
clear advantages with respect to any direct solver,
it lags behind when it is employed over increasingly
larger parallel platforms. In the next section, we dig
into the reasons for such lack of parallel performance
and propose a modern alternative which is more effi-
cient, scales over massively parallel architectures, and
enables us to tackle eigenproblems of unprecedented
size.

3. The Computational Challenges

The overall workflow towards the solution of a sin-
gle BSE starts with a density functional theory calcu-
lation to obtain single-particle Kohn-Sham states and
dipole matrix elements. We perform these steps us-
ing the Vienna Ab initio Simulation Package (VASP)
[37, 38, 39]. The VASP code is a commercial open-
source code commonly used for first-principles calcu-
lations, and provides reliable results to compute the
electronic structures of materials. The Kohn-Sham
electronic structure and quasiparticle corrections are
then used to compute the BSE Hamiltonian, Eq. (1).
Subsequently, either the lowest eigenvalues of the BSE
matrix are extracted by using an eigensolver based
on the Conjugate Gradient algorithm [36] or opti-
cal spectra are computed using the time-propagation
technique described in Refs. [23, 24].

3.1. A brief introduction to the BSE code
To obtain the solution to the BSE eigenvalue prob-

lem, there are two main stages that necessitate a large
amount of computational resources: the initialization
of the BSE Hamiltonian and the computation of the
lowest portion of its spectrum. In our BSE implemen-
tation, described in detail in Refs. [6, 5], the initial-
ization is split into two steps: 1) the generation of the
matrix elements as they are represented in Eq. (1) and
the assembly of the matrix in main memory as input
for the solver. The workflow for the first step of the
initialization is embarrassingly parallel since there is
no communication between different threads. Thanks

to the fact that the matrix elements in the BSE eigen-
value problem are independent of each other, the ma-
trix elements are evaluated in chunks, where every
subset of the matrix is computed independently from
the others. The user specifies the total number of jobs
used to write the full matrix. The calculation of the
matrix elements is split between these multiple inde-
pendent jobs, each parallelized over one entire node
using OpenMP and writing a portion of the matrix
on individual binary files. In the second step, after
all matrix elements are calculated and stored, a sepa-
rate procedure reads in the matrix elements and per-
forms the diagonalization (to compute eigenvalues)
or a time-propagation scheme (to compute the dielec-
tric function). This scheme is beneficial if multiple
different diagonalizations are to be performed on the
same matrix, e.g. for convergence tests as described
in Ref. [5]. Furthermore, as long as the time spent
writing and reading the matrix is small compared to
initialization and diagonalization steps, this scheme
also allows efficient writing of large matrices using
many single-node jobs and benefiting from backfill al-
gorithms of modern queuing systems. The workflow
above is implemented in our BSE code [5, 6] discussed
here.

As an illustration, calculating the matrix elements
for the ZnO system [33] for a matrix of size 199,433
requires about 600 node hours on Blue Waters, while
reading the matrix and computing the lowest 100 eigen-
values requires 39 node hours, and 48 node hours (i.e.,
87.3%, 5.7%, and 7.0%), respectively. The step of
computing the matrix elements can be trivially par-
allelized on as many nodes as necessary. However,
the rest of the computational time is roughly split in
half between I/O and solution of the eigenproblem.
Furthermore, in some of our tests the I/O alone re-
quired close to the maximum walltime on BlueWaters,
making it challenging to complete these runs. Con-
sequently, the main challenges in improving the code
lays in increasing the performance and parallelism of
these two tasks. In the following part of this section,
we introduce the new parallel reading process of the
matrix elements to replace the old sequential reading
process, and a new sub-space iterative solver to im-
prove the parallel efficiency in computing the solution
with respect to the conjugate gradient solver.

3.2. Matrix generation and the I/O challenge
As discussed above, in step one each independent

thread computes a number of rows of the exciton

5

Hamiltonian matrix, Eq. (1), and writes these to a
single file. Next, these individual files are read and
the data is distributed amongst several MPI ranks for
the subsequent solver step. The existing implementa-
tion serialized reading data from files by assigning a
“reader” rank to each file and allowing only one reader
to read at any given time. After completing reading
its assigned file, the reader would broadcast the read
data to all ranks, which would use the received data
to fill in their local part of the full matrix. Once the
broadcast is completed, the next reader would read
its assigned file until all files were read and broad-
cast. This algorithm proved to be a bottleneck when
assembling large matrices on massively parallel clus-
ters like Blue Waters.

Hence, for this work we extended the reader code
to be split in two phases “reading from disk” (I/O) and
“completing the matrix” (communication). Doing so
avoids the need to serialize during the I/O phase. We
designed the algorithm to support any desired num-
ber of MPI ranks reading concurrently, as long as the
file system can sustain the concurrent reads. Once
the Hermitian matrix is read, the upper half is filled
by sending data from those ranks that read the corre-
sponding transposed part. This completely avoids se-
rialization while reading and introduces only a small
amount of serialization while sending data between
ranks due to our use of blocking MPI calls. With
this new approach the total time spent to read and
complete the matrix is almost identical to the raw
I/O time on the “reader” rank reading the largest file,
indicating that MPI communication is not a signif-
icant part of the time budget. Finally, when using
ChASE to diagonalize the parallel matrix, the matrix
needs to be converted from being distributed purely
along rows (“stripped”) to being distributed in blocks
(“blocked”). For the current usage scenario there is
sufficient memory available to store both the striped
and the blocked copy of the matrix, permitting the
use of a simple out-of-place algorithm using blocking
MPI one-to-one communication calls to redistribute
the matrix data among the MPI ranks. Overall, these
changes resulted in a significant speedup by reducing
time spent to read and build the matrix (see Table 1
for detailed results).

3.3. Solving the BSE eigenvalue problem on massively
parallel architectures

The BSE Hamiltonian matrix is both dense (most
of its entry are non-zero) and large with a size N up

to 106. When dealing with dense Hermitian matri-
ces, it is customary to use a so-called “direct” eigen-
solver, which computes solutions by directly reducing
the form of the matrix to tri-diagonal form. After-
wards an iterative solver is used to further transform
the matrix to diagonal, to recover its real eigenvalues.

When only a small number m � N of low-lying
eigenvalues is sought, it is customary to resort to iter-
ative eigensolvers, which are typically used in the case
of sparse matrices. The main reason for this choice re-
sides in the fact that the number of floating point op-
erations needed to compute the solution is O(N2m),
which can be much smaller than the O(N3) opera-
tions required by a direct eigensolver. The break-even
point between these two classes of algorithms depends
on the number of iterations needed by the iterative al-
gorithm to declare all desired eigenpairs converged.

The eigenvectors of the BSE Hamiltonian repre-
sent physical low-lying eigenmodes and provide in-
formation on the single-particle excitations that con-
tribute to a given excitonic state. Hence, we are in-
terested in the full eigenpairs not just the low-lying
eigenvalues. In this case, it is advisable to use an iter-
ative eigensolver based on a subspace projection. The
main rationale is that such an algorithm deals with
the entire set of desired eigenvectors instead of con-
verging each one in a sequential fashion, as it is typical
for Krylov space methods [40, Ch. 9]. The advantage
of subspace methods is that the search space for the
eigenvectors can be treated as one contiguous block
and further refined at each iteration of the eigensolver.
This is the main philosophy behind the version of the
Conjugate Gradient (CG) method [18, 19] modified
by Kalkreuter and Simma (KSCG) in their work [36].

The advantage of CG with respect to the classic
Lanczos algorithm is in its ability to return eigen-
values with controlled numerical errors and correct
multiplicities. Kalkreuter and Simma improved the
CG algorithm by alternating CG minimization with
direct minimization of the subspace spanned by the
approximate eigenvectors. The KSCG solver yields
a computational cost in terms of FLOP count that
scales as O(N2mC0), where C0 is the total number
of CG cycles to converge all desired m eigenpairs. In
KSCG the number of needed CG cycles grows with
larger eigenvalues and is determined dynamically at
runtime. Therefore it is not possible to have an a pri-
ori estimate of it. Nonetheless the total FLOP count
is greatly reduced from the O(N3) needed for the ex-
act diagonalization of the matrix.

6

Originally conceived for applications in Quantum
Chromodynamics, the KSCG eigensolver parallel im-
plementation is based on geometrical data decom-
position where vectors are equally partitioned and
stored on distinct processing nodes. This choice was
based on the assumption that the matrix of the eigen-
problem is sparse and local, implying communica-
tion only between nearest-neighbor nodes for matrix-
vector multiplications.

With the adoption of the KSCG algorithm, our
BSE code had been applied to successfully study ex-
citonic properties for many material systems, see e.g.
Refs. [41, 42] and references therein. Unfortunately,
because the BSE Hamiltonian is dense and lacks a lo-
cal structure, the KSCG eigensolver ends up having
a much larger inter-node communication load both
in terms of message size and number of MPI collec-
tives calls. We also note that each CG cycle deals
with a vector at a time which implies that the arith-
metic intensity (the number of operations per byte)
of the algorithm is relatively low. Typically such an
algorithm is bound by memory bandwidth and has a
performance far from the theoretical peak of the pro-
cessor. For these reasons KSCG suffers from limited
parallel scalability. In turn, such a limitation curbs
the amount of parallel resources that can be used
effectively, and restricts the usage of our BSE code
to investigate large physical systems which could be
simulated on modern massively parallel architectures
with thousands of compute cores.

The challenge of efficient use of parallel computing
resources when solving large dense eigenvalue prob-
lems is not new. Several attempts have focused on
improving direct methods [43, 44, 45] that are, in
part, based on kernels with a high arithmetic intensity
which exploit the multi-core processor performance.
A typical example is the operation of reduction of
a dense matrix to banded form which is based on
the fast FLOPs2 of Basic Linear Algebra Subroutines
level 3 (BLAS-3) kernels [44]. These kernels are the
most optimized in numerical linear algebra libraries
[46, 47, 48] and can achieve up to 95% of the theoret-
ical peak performance of the processor. Despite their
recent advances all direct solvers are limited by the
intrinsic computational complexity of their approach
which scales as O(N3) and limits their effective par-
allelization.

2The term “fast FLOPs” here is the opposite as the term
“slow FLOPs” already defined in the introduction.

Our aim is to keep the advantage of fast FLOPs
and to reduce the complexity of the eigensolver. To
our knowledge, the only recent development in the
field of numerical linear algebra that can achieve both
goals is the Chebyshev Accelerated Subspace iteration
Eigensolver (ChASE) [9]. This eigensolver has been
initially developed to solve sequences of dense eigen-
problems as they arise in Density Functional Theory
(DFT) based on plane waves. The effectiveness of
ChASE stems from a spectral filter based on Cheby-
shev polynomials. These polynomials can be com-
puted through a 3-term recurrence relation, which
enables the filter to be expressed in terms of BLAS-
3 kernels. In addition, the fraction of computational
time spent in the filter is by far larger than any other
task within ChASE. This makes ChASE an extremely
efficient solver in terms of node-level performance.

When parallelized over multiple nodes, ChASE
takes advantage of its simple algorithmic structure
based on subspace iteration and matrix-matrix mul-
tiplication to keep the amount of communication to
an acceptable level. In practice, the BSE matrix is
distributed only once across all MPI ranks in equal
blocks of data and never re-distributed. Communi-
cation through MPI collective calls involves only the
matrix of filtered vectors spanning the subspace. It
has been shown [9] that communication overhead is
minimized whenever the number of MPI ranks can
be arranged in a square Cartesian grid. Performance
is achieved, at the node-level, by using specialized
multi-threaded libraries such as MKL or cuBLAS (for
computation on GPU cards). Finally, ChASE allows
pre-computing and minimizing the total FLOP count
necessary to reach convergence.

Because the ChASE library and the BSE code are
written in C++ and Fortran, respectively, the inte-
gration and usage of ChASE as the eigensolver ne-
cessitated the implementation of a glue code and, as
described in Sec. 3.2, the initialization and distribu-
tion of the BSE Hamiltonian had to be reworked to be
compatible with the data layout of ChASE. This also
reduced the time spent in I/O and redistribution of
data. ChASE requires the choice of a variable which
sets the size of the search subspace which is a superset
of the subspace spanned by the desired eigenvectors
of the BSE matrix. As we will see in the next section
(and in the appendix) such a choice may influence the
speedup and convergence.

In the next section we present an exhaustive num-
ber of numerical tests executed on two distinct mas-

7

sively parallel clusters. We illustrate the limitation of
the KSCG algorithm, compared to the ChASE eigen-
solver, and show how ChASE provides much better
parallel scalability, which eventually will allow calcu-
lations on much more complex materials.

4. Numerical experiments

In this section we illustrate the results of a series of
numerical experiments aimed at addressing the issues
discussed above, related to matrix initialization and
eigenproblem solutions using massively parallel com-
puting clusters. We show how the restructuring of the
parallel I/O dramatically reduces the time spent read-
ing and setting up the BSE Hamiltonian matrix. We
compare the KSCG and ChASE eigensolvers across
a range of eigenproblems. Finally, we show how the
use of ChASE enables our BSE code to further push
the accessible physical parameter space, thanks to an
enhanced use of parallel resources. The experiments
are divided into three sets, each presenting a unique
set up meant to drive our points home.

Strong scaling. We select a specific BSE eigenvalue
problem, such that the size of its matrix fits into one
computing node of a given cluster. We then initialize
the matrix and solve for a small set of the eigenpairs
using both ChASE and KSCG. This procedure is car-
ried out for an increasing number of computing nodes
to examine the scaling of the computation keeping
the data set constant. On a log-log plot, a positive
outcome would result in a linearly decreasing time-to-
solution as a function of computing nodes used.

Weak scaling. For these experiments we successively
increase the size of the BSE eigenvalue problem with
the number of nodes, keeping the workload per com-
pute node approximately constant. This is achieved
by changing the energy cutoff Ecut of the BSE Hamil-
tonian. We compute the solutions of these eigenvalue
problems with both KSCG and ChASE eigensolvers
and examine the change in computing time. Good
parallel behavior would result in a roughly constant
time to solution as a function of the number of com-
puting nodes.

Practical case: Converging the exciton-binding energy.
In the last set of experiments, we showcase a study
illustrating how leveraging a bigger set of computa-
tional resources enables us to solve very large BSE

matrices which were previously inaccessible. A typi-
cal example is provided by organic crystalline naph-
thalene, for which converging the exciton-binding en-
ergy with respect to the BSE energy cutoff Ecut re-
quires solving matrices larger than previously consid-
ered. Thanks to the use of ChASE it was possible
to reach the converged regime for the exciton-binding
energy of this material.

Resources. Most of these experiments are performed
on the National Science Foundation (NSF) BlueWa-
ters supercomputer, hosted at the National Center for
Supercomputing Applications (NCSA) at the Univer-
sity of Illinois, Urbana-Champaign. On BlueWaters
we exclusively used the Cray “XE” compute nodes,
each equipped with two AMD 6276 Interlagos pro-
cessors connected via the Gemini interconnect. Each
node has 16 floating point Bulldozer cores and 64 GB
of memory. On BlueWaters our BSE code as well as
the KSCG and ChASE eigensolvers are compiled with
PGI v13.6.0 and linked against Cray’s LibSci v12.1.3,
and MPICH v6.1.3.

We repeated a subset of the weak scaling tests on
standard CPU and multi-GPU nodes of the JUWELS [49]
cluster hosted at the Jülich Supercomputing Centre
(JSC). Each standard node of JUWELS is equipped
with two Dual Intel Xeon Platinum 8168 CPUs (48
cores), an EDR-Infiniband (Connect-X4) interconnect,
and 96 GB of memory. In addition to standard com-
pute nodes, JUWELS is equipped with 56 GPU nodes
with two Dual Intel Xeon Gold 6148 CPUs (40 cores),
connected via a dual EDR-Infiniband (Connect-X4)
and 192 GB of memory each, hosting 4 NVIDIA V100
GPU cards. Currently, ChASE supports the use of
a single GPU device per MPI rank. GPU experi-
ments on JUWELS use all NVIDIA V100 by running
4 MPI processes per node. ChASE was compiled with
the Intel compiler and Intel MKL version 19.0.3.199,
ParaStation MPI version 5.2.2-1, and CUDA version
10.1.105. In the following, we explain these experi-
ments in detail and analyze the results.

4.1. Strong scaling
For the strong scaling tests, we selected hafnium

oxide, HfO2, with a Brillouin zone sampling of 6×6×6
k-points and a BSE energy cutoff of 9.1 eV. This cor-
responds to a BSE eigenvalue problem with a matrix
size of N = 41,252, and we solve for the m = 100
lowest eigenpairs of the spectrum. In order to mini-
mize overhead generated by MPI communicators, we

8

Table 1: Strong scaling and speedup of the code with the old I/O routine and KSCG solver, compared to the new parallel I/O
implementation and the ChASE solver. Data is collected for runs using between 1 (16 threads) and 64 (1024 threads) processes.

MPI ranks Old I/O Parallel I/O Speedup KSCG ChASE Speedup

1 336.55±6.10 791.16±19.69 0.43 5515.65±4.64 2390.08±2.59 2.31
4 374.96±9.08 374.26±7.21 1.00 1554.04±0.93 617.83±2.63 2.52
9 413.86±3.11 191.00±0.85 2.17 830.26±0.22 270.86±3.09 3.07
16 408.63±7.45 97.24±0.76 4.20 592.23±1.27 161.30±2.22 3.67
25 443.46±14.78 78.94±0.76 5.62 471.94±0.31 109.59±0.66 4.31
36 491.44±12.28 40.38±0.34 12.17 427.56±0.31 82.01±0.08 5.21
49 451.09±2.46 33.81±0.71 13.34 383.55±2.71 67.82±0.08 5.66
64 450.20±2.10 78.17±1.32 5.76 359.89±0.50 55.92±0.18 6.44

always use a number of MPI ranks which is the square
of an integer number. This is due to the fact that most
collective communications internal to ChASE are ei-
ther AllReduce or Broadcasts which benefit from a
square grid of processes; even better gain is achieved
when the square is a power of two. We measured CPU
time to completion within the BSE code for the tasks
related to matrix initialization and eigenproblem so-
lution, using between 1 and 64 processes 3. For each
node of BlueWaters (BW) we run the computation
always with a number of threads equal to the total
number of 16 floating point cores per node.

1 4 9 16 25 36 49 64
number of processes

10
2

10
2

10
3

10
3

Ti
m

e
to

 s
ol

ut
io

n
(s

)

Ideal scaling (ChASE)
Ideal scaling (KSCG)
ChASE
KSCG

Figure 1: Strong scaling test. For a test with a specific number
of MPI ranks, the computing time is averaged over 8 identical
calculations on exactly the same computing nodes to account
for statistical fluctuations in the floating point operations and
communications among nodes.

We first show the benefit of adopting the new
reading routine: Tab. 1 shows the improvement that

3We use equivalently and interchangeably the terms process
and MPI rank.

the new parallel I/O delivers when compared to the
original routine. In the original routine, only one MPI
rank would read at a time, so while different ranks
would read different files, only one rank would read
at any given time. In practice, the code was no faster
than having a single MPI rank read all files and broad-
cast the contents.

The new parallel routine scales well with increas-
ing number of MPI ranks: For 1 – 4 MPI ranks, the
CPU time of the new I/O is longer or comparable to
the sequential routine, due to the additional “blocked”
re-distribution process. While KSCG can use the old
“stripped distribution”, this redistribution is needed
when invoking ChASE. Beyond 4 MPI ranks, there
is a stark improvement for the parallel routine and
the peak speed-up of over 13 occurs for 49 MPI ranks
for this example. The new algorithm is designed so
that each MPI rank reads concurrently the part of the
matrix that it holds, resulting in the lower half of the
matrix being initialized. Subsequently the upper half
is initialized by sending MPI one-to-one messages be-
tween the MPI ranks holding an initialized part of the
matrix and the to-be-initialized transposed part. This
approach avoids serialization during the I/O phase
and only introduces a small amount of serialization
among the ranks during the communication phase,
reducing the time spent to read the complete matrix
to barely more than the time required to read in the
segment owned by any of the MPI ranks.

For the strong scaling experiment, and for both
the KSCG and ChASE eigensolvers, we set the value
nex = 30; this choice implies that the search space
contains 30 additional eigenvalues on top of the wanted
part of the spectra (nev = 100). This feature of
subspace iteration eigensolvers is necessary in order
to avoid that the convergence of the largest desired

9

eigenvectors becomes extremely slow. In order to
demonstrate the scaling of the eigensolver, we show in
Fig. 1 the time-to-solution as a function of the number
of MPI ranks used. For each number of MPI ranks,
the timings are averaged over 8 runs. Already on a
single node, ChASE typically solves the eigenproblem
in a fraction of the time needed by the KSCG solver.
For the example chosen here, this corresponds to a
2.3x speed up, which grows to 6.4x on 64 nodes (see
Tab. 1).

The growth in speedup, a consequence of the bet-
ter scaling of the ChASE eigensolver, can be easily
observed by comparing the deviation from the ideal
scaling curves (dashed lines in Fig. 1); ChASE re-
mains quite close to ideal scaling up to the largest
number of compute nodes we used (64), but KSCG
deviates from ideal scaling already for 16 nodes and is
far off for 64 nodes. This behavior is expected, as the
KSCG solver experiences an increase in the communi-
cation overhead relative to the time spent in carrying
out actual computations. Thanks to the use of BLAS-
3 kernels, ChASE makes better use of the CPU re-
sources. Furthermore, it does not experience an early
change of the ratio between computation and com-
munication, until the amount of data per MPI rank
starts becoming too small for the BLAS-3 kernels to
take full advantage of their arithmetic intensity.

1 4 9 16 25 36 49 64
number of processes

0.0

0.2

0.4

0.6

0.8

1.0

Pa
ra

lle
l e

ffi
ci

en
cy

ChASE
KSCG

Figure 2: The parallel efficiency of the ChASE solver (black)
and the CG solver (red) with respect to one compute node (16
cores).

This behavior is directly quantified by the parallel
efficiency η of both solvers, which measures the loss
in efficiency of a computational task as the number of

processing units p increases

η =
tref ∗ pref

t ∗ p
. (2)

In our setup, the reference time tref and processing
units pref refer to a single-node simulation with 16
cores. The plot of η versus the number of processes is
shown in Fig. 2. It can be seen that the parallel effi-
ciency of ChASE remains above 90% up to 16 nodes,
while that of the KSCG solver drops rather rapidly.
For 64 ranks, the efficiency of the KSCG solver drops
to 0.24, while that of the ChASE solver is still 0.67,
well above the 50% mark.

The speed up and parallel efficiency prove that
the ChASE eigensolver significantly accelerates the
process of obtaining solutions for practically relevant
excitonic eigenvalue problems, and offers a better par-
allel behavior when compared to the KSCG solver.
As mentioned in Sec. 3, the reason for the substantial
speed up of ChASE comes from its use of highly op-
timized BLAS-3 computational kernels which extract
as much performance as possible at the node level.
The better scaling of ChASE resides in a lower com-
munication overhead threshold which makes it more
competitive.

4.2. Weak scaling
Weak scaling measures the behavior of a computa-

tional task when its workload is maintained constant
while the computing resources are increased. In order
to realize this set up we solve increasingly large eigen-
problems, commensurate to the growth in number of
compute nodes.

In this section, we illustrate the weak scaling of
both eigensolvers using the Indium oxide (In2O3) sys-
tem, that was previously studied in [32]. The k-point
sampling is fixed at 5×5×5 and the BSE matrix size is
changed through the BSE energy cutoff Ecut, which
determines the number of non-interacting electron-
hole pair states involved (see Sec. 2). Precisely tuning
the energy cutoff allows us to adjust the matrix size
from N ∼ 38,500 to N ∼ 500,000, while increasing
the number of compute nodes and keeping the bulk
of workload per node approximately constant. The
matrix sizes corresponding to the different Ecut and
the node counts are shown in Tab. 2.

Unfortunately, one cannot exactly predict the to-
tal workload to reach convergence for an iterative
eigensolver, but it is reasonable to assume that its
order of magnitude is O(N2), as shown in Sec. 3.

10

Based on this assumption, the workload per node is
kept within ±0.5% of that for the simulation on a sin-
gle node. With this set of parameters, the utilization
of the memory for each single node across different
matrix sizes is kept at ∼80% and ∼50% in the BW
cluster and JUWELS cluster, respectively.

The weak scaling tests executed on both clusters
have slightly different goals: On BW we tested larger
matrices with sizes up to half a million and com-
pared the scaling between the KSCG and the ChASE
solvers. On JUWELS we scanned a lower number of
nodes and focused on just the ChASE eigensolver, ex-
ecuting it on CPU nodes and GPU equipped nodes.
Ecut, the matrix size, and the number of MPI ranks
are reported in Table 2 and we kept all other eigen-
solver parameters the same, i.e., nev=100 and nex=25.
On BW we kept the number of MPI ranks the same
as the number of nodes and set the number of OMP
threads per rank equal to the total number of comput-
ing cores in each node. Because the JUWELS cluster
has more cores per node and four GPU devices on
each GPU node, we used 4 MPI ranks per node with
12 and 10 OMP threads per rank on the CPU nodes
and GPU nodes, respectively.

14 9 16 25 36 49 64 81 100 121 144 169
Number of processes

2000

4000

6000

8000

10000

12000

14000

16000

18000

Ti
m

e
to

 s
ol

ut
io

ns
 (s

)

mode
KSCG
ChASE nex = 25
ChASE nex = 100

Figure 3: Weak scaling test. Averages over 5 runs are per-
formed for ChASE with nex = 25 and the error bars are plot-
ted.

Figure 3 illustrates weak scaling of ChASE and
KSCG via the total time needed to solve for the first
100 eigenpairs as a function of the number of comput-
ing nodes used on BW. In order to determine variabil-
ity, we executed this test on BW 5 times for each of
the distinct matrix sizes and solvers and averaged over
the measured completion times. While for ChASE
this procedure was repeated for all node configura-

tions, for the KSCG solver this average is only per-
formed up to 81 nodes due to the high computa-
tional cost and the small standard deviation. Since
the KSCG error bars were no larger than 0.2% across
all calculations and are not visible in the plot, only
ChASE standard deviation is shown. We also re-
peated the numerical tests for ChASE with a different
value of nex=100 and discuss motivation and results
in Sec. 4.3.

Figure 3 shows that for KSCG the increase in time
is almost monotonic and for ChASE it follows an oscil-
lating behavior as the number of processes increases.
For the KSGC solver, the maximum time of execution
(17,825 secs on 169 nodes) is about 3.4 times longer
than the minimum (5,197 secs on a single node). Cor-
respondingly, the longest time of execution (6,522 secs
on 100 nodes) for ChASE is only 2.67 times longer
than the shortest time (2,443 secs on 25 nodes), in-
dicating a better weak scaling of the ChASE solver.
While the smallest and largest time-to-solution for
both solvers occur for different node counts, it is im-
portant to notice that the ratio between the minima
and maxima of the two solvers increases from 2.1 to
2.7. This increasing trend is analogous to the increase
in speed-up between the two solvers in the strong scal-
ing case, indicating a better parallel efficiency for the
ChASE eigensolver. This trend is even more evident
for node counts above 100 nodes: the speed up of
ChASE with respect to KSCG keeps increasing con-
sistently, reaching 4.3 at 169 nodes.

The timing for ChASE varies especially in the
range between 16 and 64 nodes, corresponding to ma-
trix sizes between 105 and 3×105. These oscillations
are in part algorithmic and in part due to variation in
the communication overhead. The algorithmic causes
of oscillations originate in the iterative nature of the
ChASE solver. Because iterative numerical algorithms
are not deterministic, they do not have a constant
work per byte of data. In other words, one cannot
predict a-priori the number of operations necessary
to reach a solution. In the specific case of ChASE,
what varies is 1) the number of subspace iterations,
and 2) the different counts of matrix-vector opera-
tions required to converge across eigenproblems of
different size (see supplementary material for more
details). Both these factors directly determine the
effective workload associated with an eigenproblem
solution by ChASE.

The communication overhead is mostly due to two
MPI collectives used in the ChASE implementation:

11

Table 2: Ecut and matrix sizes used for the weak scaling tests on the Blue Waters and JUWELS clusters as a function of the
computing nodes.

nodes Blue Waters JUWELS Energy cutoff Matrix size
MPI OMP MPI OMP(CPU) OMP(GPU) (eV) (N)

1 1 16 4 48 40 6.45 38,537
4 4 64 16 192 160 7.45 76,887
9 9 144 36 432 360 8.31 115,459
16 16 256 64 768 640 9.11 154,023
25 25 400 100 1200 1000 9.87 192,788
36 36 576 144 1728 1440 10.54 231,011
49 49 784 196 2352 1960 11.15 269,645
64 64 1024 11.73 307,865
81 81 1296 12.30 346,915
100 100 1600 12.82 385,183
121 121 1936 13.32 423,607
144 144 2304 13.83 462,469
169 169 2704 14.30 500,649

AllReduce and Broadcast. We illustrate their effect
in more detail later in this section when discussing ex-
periments executed on JUWELS. In conclusion, the
numerical behavior of KSCG and ChASE is influ-
enced by similar factors having different effects on
both solvers. Time spent in inter-node communica-
tion tends to increase timings for both solvers as the
number of computing nodes grows. The less regu-
lar behavior of ChASE is additionally determined by
the changes in the effective workload executed by the
solver.

The results of the tests executed on the JUWELS
cluster [49] are shown in Fig. 4. The parameters of
ChASE execution were the same as for Blue Waters,
namely nev=100 and nex=25. To match the num-
ber of GPU devices hosted by JUWELS GPU nodes,
we use a different configuration of the computing re-
sources by assigning four MPI ranks to each node.
In order to improve the statistical analysis of our re-
sults we executed 15 repetitions for any given matrix
size on both CPU and GPU nodes. For each point in
the plot we show the average and its 95% confidence
interval (CI) based on the standard deviation. The
results are shown as a set of points, blue indicating
time-to- solution for the CPU nodes and green for the
GPU nodes, encased by a shaded area indicating the
CI.

While the standard deviation for CPU nodes is
much larger than for GPU nodes, the time-to-solution
on CPU nodes and GPU nodes also shows noticeable

similarities of the pattern of variation as a function of
the number of processes. In particular, a big jump can
be observed in going from 16 to 36 processes. This is
a typical case where there are two factors both adding
to the computing time: a drastic increase in the total
matrix-vector operations executed by ChASE and a
substantial increase in latency of the many calls to
MPI AllReduce. We have benchmarked such call (as
well as the Ibcast call) and observed a jump from
15.6 ms to 21.9 ms in average latency. Likewise,
ChASE performs 8,160 and 11,360 matrix-vector mul-
tiplications using 16 and 36 MPI ranks, respectively
(see complete set of data in the supplementary ma-
terial). This latter effect is not always positive but
it may also favor a decrease in run time as it can be
deduced observing that the number of matrix-vector
operation decreases from 11,360 to 9,340 in going from
36 to 100 MPI ranks, respectively. On top of these
two effects, the average latency of MPI Bcast keeps
increasing, contributing with a constant ratio to the
overall increase in time-to-solution.

Overall, it is clear that, whenever possible, an exe-
cution over multiple GPU devices should be preferred,
since in the worst-case scenario it halves the run time
with respect to the use of only CPU nodes. On the
other hand, the peak performance of the four NVIDIA
V100 GPUs is significantly larger than two times that
of the CPU nodes, which implies that the use of the
GPUs is not as efficient as on the multi-cores. This ef-
fect is expected since cuBLAS is less efficient than the

12

Multi-threaded MKL BLAS in dealing with repeated
multiplications between a square and a tall and skinny
matrix. In addition, there is some unavoidable over-
head due to the transfer of the filtered vectors from
the main to the local GPU memory and vice versa.

4 16 36 64 100 144 196
Number of processes

40

60

80

100

120

Ti
m

e
to

 s
ol

ut
io

ns
 (s

)

mode
gpu
cpu

Figure 4: Plot of weak scaling results for the ChASE solver
on JUWELS for both CPU (blue) and GPU (green) nodes.
Statistics are over 15 runs. The plot shows average and 95%
confidence interval based on standard deviation in shade of the
same color.

4.3. Search space and ChASE convergence
As shown in Ref. [9], the convergence of ChASE

can be significantly affected by the choice of the num-
ber of additional eigenpairs nex, which together with
the wanted part of the spectra form the full search
space. Specifically, in ChASE the convergence of a
given eigenpair (λa, xa) is deterministic and is related
to the distance between λa and the center of the inter-
val [λnev+nex, λmax] divided by its half-width. In our
weak-scaling test the minimum eigenvalue λ1 changes
very little, while the maximum eigenvalue λmax gets
significantly larger as the size of the matrices increases.
In turn, such a change leads to a worsening of the
convergence ratios of the desired eigenpairs (see ex-
ample for the correlation between the convergence of
the solver and the matrix size in the supplemental in-
formation). The convergence can be improved by in-
creasing the nex value such that λnev+nex is increased
accordingly. However, as more extra eigenvalues are
added, the convergence of the iterative solver is im-
proved at the expense of increasing the workload due
to a larger number of the vectors that iterate and
need to be filtered. In an attempt to obtain a less
oscillatory curve for the weak scaling for ChASE on
BW, we now analyze how the behavior of the solver

can be influenced by the nex value as the matrix size
increases.

To illustrate the effect of the nex value, we mea-
sured the time-to-solution for the same weak scaling
problem set, but with nex = 100. In Fig. 3 we com-
pare these results up to 100 nodes and observe that
increasing nex leads to a more flat curve of the time-
to-solution for ChASE. Between 9 and 64 nodes it
can be clearly seen that the run time oscillates less,
compared to nex = 25. In addition, the three largest
matrices benefit substantially from choosing a larger
nex showing a consistent decrease in timing. Inter-
mediate size matrices do not benefit in the same way.
As mentioned above, this is attributed to the trade-
off between two competing factors; the performance
gain obtained from a better convergence rate and the
increased in size of the search space which causes a
growth in workload.

To prove this point, we picked the matrix of size
N = 231,011 and measured the run time as a func-
tion of nex. Indeed we observe an optimized value
of nex around 40 – 50 (see details in the supplemental
information). A potential way to improve the choice
of nex across different matrices is to perform such a
test once, and then predict the nex value accordingly
across different matrix sizes. Predicting a scaling fac-
tor in a systematic way, however, is not straightfor-
ward, and can be affected significantly by the distri-
bution of eigenvalues in the overall spectra. Thus,
it can depend significantly on the number of desired
eigenpairs.

4.4. A practical case: converging exciton-binding en-
ergy in naphthalene

In this section, we illustrate how the adoption of
ChASE enables us to address physical problems which
were inaccessible before, due to their high computa-
tional cost. In particular, we show that using ChASE
enables to solve for extremely large eigenvalue prob-
lems that occur when accurately converging the ex-
citon binding energy of a crystal with respect to the
BSE energy cutoff. Here we use the example of a
naphthalene organic crystal (see Fig. 5 for the crystal
structure of the material): In this system, the exciton-
binding energy converges slowly with respect to the
BSE energy cutoff and requires matrices with ranks
up to ∼ 500,000. This is only possible thanks to the
excellent weak scaling behavior of the ChASE eigen-
solver.

13

Table 3: BSE matrices for the convergence test of the exciton binding energy (in eV) for a naphthalene organic crystal with
respect to the BSE energy cutoff (in eV). As the size increases (with increasing energy cutoff) we use more processes with the
ChASE solver. Compute timings (in s) and the binding energies of the dark and optically active excitonic state are reported (see
text).

1/Ecut size # processes time (s) Eb, dark Eb, active
0.1667 7172 16 10.672 1.18224 0.93402
0.125 22264 16 69.087 1.2053 0.97823
0.1 49888 36 176.678 1.23005 1.03827
0.0833 92220 36 626.752 1.23496 1.06192
0.0714 149808 36 2829.956 1.23945 1.09635
0.0625 217292 36 3316.959 1.24473 1.13995
0.0556 296648 64 3882.796 1.24878 1.1908
0.05 381364 121 4443.877 1.25251 1.23184
0.0455 472444 169 4256.253 1.25671 1.26287

Figure 5: Primitive unit cell of naphthalene crystal with black
spheres being carbon atoms and white spheres being hydrogen
atoms. a, b, and c labels the crystal axis.

Naphthalene is an organic crystal with 20 car-
bon atoms and 16 hydrogen atoms per primitive unit
cell. We treat carbon 2s and carbon 2p as valence elec-
trons, leading to a total of 96 valence electrons. Al-
though this unit cell is not as large as that for In2O3,
there are noteworthy difficulties in obtaining exciton-
binding energies: The lowest three bound excitonic
states are dark, which means that their optical oscil-
lator strength, representing the strength of the dipole
transition, is low. In practice, the exciton binding
energy in this material is typically defined as the dif-
ference between the lowest peak of the imaginary part
of the dielectric function without and with consider-
ing excitonic effects [50]. The lowest peak with exci-
tonic effects included corresponds to the fourth low-
est eigenvalue of the BSE matrix. Thus, we study the
convergence of both optically dark and active states
with respect to BSE energy cutoff in this work.

To this end, we compute the lowest eigenvalue
(dark excitonic state) and the fourth-lowest eigen-
value (optically active excitonic state of the first peak
for light polarization along the y direction). We re-

port the size of the eigenproblem, the run time for
ChASE, and the calculated exciton binding energies
in Tab. 3. It can be seen from the table that as the
energy cutoff increases (decreasing 1/Ecut), the ma-
trix size increases significantly and reaches ∼ 500,000
for the largest energy cutoff we simulated. Using the
KSCG solver, it was not possible to tackle matrices of
this size, and the largest matrix that we can reach was
on the order of ∼ 200,000, corresponding to Ecut = 16
eV.

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175
1/Ecut (eV 1)

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

E b
 (e

V)

Lowest active state
Lowest dark state

Figure 6: Convergence of the exciton-binding energy of the
lowest dark state (blue) and first optically active state (red)
with respect to the BSE energy cutoff Ecut. Extrapolation of
the curve to zero results in the exciton binding energy and is
shown using data points from Ecut=10 – 16 eV (dashed line, red
and blue) and Ecut=18 – 22 eV (dotted line, red and blue). The
black dashed vertical line represents the limit of KSCG solver.

The convergence test in Fig. 6 shows that by push-
ing the matrix size beyond what was possible using
the KSCG solver, we find a great improvement of the

14

convergence of exciton-binding energy for this mate-
rial. As mentioned in Sec. 2, the converged exciton-
binding energy is obtained through linear extrapo-
lation of the corresponding eigenvalues of matrices
computed using the largest values of Ecut. In partic-
ular, we compare extrapolations of Eb obtained using
data points from Ecut=10 – 16 eV (achievable using
the KSCG solver), and from Ecut=18 – 22 eV (only
achievable using the ChASE library).

This figure shows that for both the dark and the
optically active state, the linear regime starts emerg-
ing only after matrix sizes N ∼ 200,000, correspond-
ing to Ecut = 16 eV. Significant differences can be seen
between the extrapolation results using the two sets
of data. For the dark state, using only data points
in the range of Ecut =10 – 16 eV results in an extrap-
olated value of Eb = 1.267 eV, compared to a value
of Eb = 1.292 eV obtained using data points in the
range Ecut=18 – 22 eV. The difference is much larger
for the optically active state, with the extrapolation
of Eb = 1.293 eV (Ecut =10 – 16 eV) vs. Eb = 1.588
eV (Ecut =18 – 22 eV). In other words, using eigenval-
ues exclusively computed with the KSCG algorithm
underestimates the value of the extrapolated exciton
binding energy by 2% and 18.6%, for the lowest dark
and lowest active state, respectively. The underesti-
mation of the exciton-binding energy for the lowest
active state is not only large, but also plays a more
important role from a practical point of view. The
lowest optically active state corresponds to the on-
set of measurable optical absorption and impacts the
use of a material, e.g. for optoelectronic applications,
more than the lowest dark state. Many similar ma-
terials exhibit optically dark lowest excitonic states
and the lowest optically active states higher in energy
[51, 52].

In summary, using naphthalene as an example, we
show that increasing the size of the BSE Hamiltonian
is critical to obtain an accurate extrapolation of the
exciton-binding energy. Integrating the ChASE solver
into our code allows us to solve eigenproblems with
matrix sizes two to five times larger than what was
possible before. Adoption of the ChASE solver, thus,
enables more accurate predictions of the exciton-binding
energy and opens up opportunities to study the opti-
cal properties of materials more accurately. This can
benefit many applications such as organic solar cells,
for which knowledge of the exciton binding energy
is amongst the most important aspects to be uncov-
ered [52].

5. Summary and Conclusions

We described and analyzed the modernization of
a legacy theoretical spectroscopy code. This code al-
lows for in silico predictions of optoelectronic proper-
ties of materials by solving the Bethe-Salpeter equa-
tion for the optical polarization function. Here we
identified two main bottlenecks, namely the initializa-
tion of the underlying excitonic Hamiltonian matrix
from disk and the solution of the corresponding eigen-
value problem for a small fraction of the lowest part
of the spectrum. We addressed each bottleneck in-
dividually: First we re-factor and parallelize the I/O
routines that are responsible for reading the matrix
elements from files and distributing them among the
compute nodes. Second, we integrate the scientific
software ChASE, a new parallel library specialized in
solving for partial spectra of large and dense Hermi-
tian eigenproblems.

Our results show that the new parallel I/O routine
scales well with the number of compute nodes and in
our test we find a speed-up of up to 13.34 compared
to the legacy implementation. This was determined
when reading a matrix of size 41,252 on 49 compute
nodes, i.e., a total of about 842 rows per MPI rank,
below which increasing inter-node communication re-
duces the speedup.

To characterize the implementation of ChASE for
finding the lowest eigenvalues, we carry out three sets
of performance measurements: Strong scaling tests,
weak scaling tests, and tests on the convergence of the
excitonic binding energy of organic crystalline naph-
thalene. The last set of tests illustrates for a mate-
rial of practical importance that the modernized code
can access exciton physics at a scale that was pre-
viously unattainable. Using these results we demon-
strate that the integration of the new ChASE library
into the BSE code achieves two main objectives: First
it enhances both the parallelism and the scaling be-
havior of the scientific software, allowing it to be used
on the current and future parallel clusters. Second, it
extends the ability of the software to tackle scientific
questions which could not be answered so far with the
necessary accuracy.

This is a success story of how to modernize a code
by changing both its algorithmic structure and the
middleware embedded in it. Because the significantly
higher computational cost of the previous implemen-
tation imposed accuracy limitations, it became a ne-
cessity to reduce such costs by addressing the existing

15

bottlenecks. The end result is a rejuvenated BSE code
that will allow its users to study novel problems at
scales inaccessible before. Overall, the modernization
of this scientific software has extended its lifetime es-
pecially in light of current computing cluster moving
towards the exascale target.

This work describes the results of a long term
project initiated under the Joint Laboratory for Ex-
treme Scale Computing (JLESC), an international con-
sortia of Supercomputing Centers and Research insti-
tutions. The interdisciplinary nature of the challenge
at the core of this project brought together researchers
from diverse fields as condensed matter physics, nu-
merical linear algebra, and high-performance comput-
ing across two continents. The results obtained are
a demonstration how effective is a multi-disciplinary
team in addressing a computational challenge that re-
quires a variety of expertise.

Acknowledgments

This material is based upon work supported by the
National Science Foundation under Grant No. DMR-
1555153. This research is part of the Blue Waters
sustained-petascale computing project, which is sup-
ported by the National Science Foundation (awards
OCI-0725070 and ACI-1238993) and the state of Illi-
nois. Blue Waters is a joint effort of the University of
Illinois at Urbana-Champaign and its National Cen-
ter for Supercomputing Applications. The authors ac-
knowledge the computing time granted through Jülich
Supercomputing Centre on the supercomputer JUWELS
at Forschungszentrum Jülich. Financial support from
the Deutsche Forschungsgemeinschaft (DFG) through
grant GSC 111 is also gratefully acknowledged. This
research is partially supported by the NCSA-Inria-
ANL-BSC-JSC-Riken-UTK Joint-Laboratory for Ex-
treme Scale Computing (JLESC, https://jlesc.github.
io/), which enabled joint workshop attendance for
scientific discussions and a visit of E. D. N. and J. W.
at NCSA in Urbana-Champaign.

References

[1] H. Anzt, E. Boman, R. Falgout, P. Ghysels, M. Heroux,
X. Li, L. Curfman McInnes, R. Tran Mills, S. Rajaman-
ickam, K. Rupp, B. Smith, I. Yamazaki, U. Meier Yang,
Preparing sparse solvers for exascale computing, Philo-
sophical Transactions of the Royal Society A: Mathemat-
ical, Physical and Engineering Sciences 378 (2166) (2020)
20190053. doi:10.1098/rsta.2019.0053.

[2] D. E. Bernholdt, S. Boehm, G. Bosilca,
M. Gorentla Venkata, R. E. Grant, T. Naughton,
H. P. Pritchard, M. Schulz, G. R. Vallee, A survey of mpi
usage in the us exascale computing project, Concurrency
and Computation: Practice and Experience 32 (3) (2020)
e4851, e4851 cpe.4851. doi:10.1002/cpe.4851.

[3] D. Kothe, S. Lee, I. Qualters, Exascale computing in the
united states, Computing in Science Engineering 21 (1)
(2019) 17–29. doi:10.1109/MCSE.2018.2875366.

[4] M. Shao, F. da Jornada, L. Lin, C. Yang, J. Deslippe,
S. Louie, A structure preserving lanczos algorithm for
computing the optical absorption spectrum, SIAM Jour-
nal on Matrix Analysis and Applications 39 (2) (2018)
683–711. doi:10.1137/16M1102641.

[5] F. Fuchs, C. Rödl, A. Schleife, F. Bechstedt, Efficient
O(N2) approach to solve the bethe-salpeter equation for
excitonic bound states, Phys. Rev. B 78 (2008) 085103.
doi:10.1103/PhysRevB.78.085103.
URL https://link.aps.org/doi/10.1103/PhysRevB.
78.085103

[6] C. Rödl, F. Fuchs, J. Furthmüller, F. Bechstedt, Ab initio
theory of excitons and optical properties for spin-polarized
systems: Application to antiferromagnetic MnO, Phys.
Rev. B 77 (2008) 184408.

[7] E. E. Salpeter, H. A. Bethe, A relativistic equation for
bound-state problems, Phys. Rev. 84 (6) (1951) 1232. doi:
10.1103/PhysRev.84.1232.

[8] G. Onida, L. Reining, A. Rubio, Electronic excitations:
density-functional versus many-body green?s-function ap-
proaches, Rev. Mod. Phys. 74 (2) (2002) 601. doi:
10.1103/RevModPhys.74.601.

[9] J. Winkelmann, P. Springer, E. D. Napoli, ChASE: Cheby-
shev Accelerated Subspace iteration Eigensolver for se-
quences of Hermitian eigenvalue problems, ACM Trans.
Math. Softw. 45 (2) (2019) 21. doi:10.1145/3313828.

[10] A. Miyata, A. Mitioglu, P. Plochocka, O. Portugall, J. T.
Wang, S. D. Stranks, H. J. Snaith, R. J. Nicholas, Direct
measurement of the exciton binding energy and effective
masses for charge carriers in organic-inorganic tri-halide
perovskites, Nat. Phys. 11 (7) (2015) 582–587.

[11] C. Klingshirn, Zno: material, physics and applications,
ChemPhysChem 8 (6) (2007) 782–803.

[12] P. Drude, Ueber die gesetze der reflexion und brechung
des lichtes an der grenze absorbirender krystalle, Ann.
Phys. (Berl.) 268 (12) (1887) 584–625. doi:10.1002/
andp.18872681205.

[13] S. Perkowitz, Optical characterization of semiconductors:
infrared, Raman, and photoluminescence spectroscopy,
Vol. 14, Elsevier, 2012.

[14] S. Hüfner, Photoelectron spectroscopy: principles and ap-
plications, Springer Science & Business Media, 2013.

[15] M. P. Ljungberg, P. Koval, F. Ferrari, D. Foerster,
D. Sánchez-Portal, Cubic-scaling iterative solution of the
bethe-salpeter equation for finite systems, Phys. Rev. B
92 (2015) 075422. doi:10.1103/PhysRevB.92.075422.

[16] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Dem-
mel, I. Dhillon, J. Dongarra, S. Hammarling, G. Henry,
A. Petitet, K. Stanley, D. Walker, R. C. Whaley, ScaLA-
PACK Users’ Guide, SIAM, Philadelphia, PA, 1997. doi:
10.1137/1.9780898719642.

[17] J. Kurzak, P. Wu, M. Gates, I. Yamazaki, P. Luszczek,
G. Ragghianti, J. Dongarra, Designing SLATE: Software

16

https://jlesc.github.io/
https://jlesc.github.io/
https://doi.org/10.1098/rsta.2019.0053
https://doi.org/10.1002/cpe.4851
https://doi.org/10.1109/MCSE.2018.2875366
https://doi.org/10.1137/16M1102641
https://link.aps.org/doi/10.1103/PhysRevB.78.085103
https://link.aps.org/doi/10.1103/PhysRevB.78.085103
https://link.aps.org/doi/10.1103/PhysRevB.78.085103
https://doi.org/10.1103/PhysRevB.78.085103
https://link.aps.org/doi/10.1103/PhysRevB.78.085103
https://link.aps.org/doi/10.1103/PhysRevB.78.085103
https://doi.org/10.1103/PhysRev.84.1232
https://doi.org/10.1103/PhysRev.84.1232
https://doi.org/10.1103/RevModPhys.74.601
https://doi.org/10.1103/RevModPhys.74.601
https://doi.org/10.1145/3313828
https://doi.org/10.1002/andp.18872681205
https://doi.org/10.1002/andp.18872681205
https://doi.org/10.1103/PhysRevB.92.075422
https://doi.org/10.1137/1.9780898719642
https://doi.org/10.1137/1.9780898719642

for Linear Algebra Targeting Exascale, Tech. rep., Univer-
sity of Tennesse (10 2017).

[18] M. Geradin, The computational efficiency of a new mini-
mization algorithm for eigenvalue analysis, J. Sound Vib.
19 (1971) 319.

[19] I. Fried, Optimal gradient minimization scheme for finite
element eigenproblems, J. Sound Vib. 20 (1972) 333.

[20] J. K. Cullum, R. A. Willoughby, Lanczos Algorithms
for Large Symmetric Eigenvalue Computations Volume 1,
Theory, Birkhauser, 1985.

[21] V. Hernandez, J. E. Roman, V. Vidal, SLEPc: A Scalable
and Flexible Toolkit for the Solution of Eigenvalue Prob-
lems, ACM Transactions on Mathematical Software 31 (3)
(2005) 351–362. doi:10.1145/1089014.1089019.
URL http://doi.acm.org/10.1145/1089014.1089019

[22] M. A. Heroux, R. A. Bartlett, V. E. Howle, R. J. Hoekstra,
J. J. Hu, T. G. Kolda, R. B. Lehoucq, K. R. Long, R. P.
Pawlowski, E. T. Phipps, A. G. Salinger, H. K. Thorn-
quist, R. S. Tuminaro, J. M. Willenbring, A. Williams,
K. S. Stanley, An Overview of the Trilinos Project, ACM
Transactions on Mathematical Software 31 (3) (2005) 397–
423. doi:10.1145/1089014.1089021.
URL http://doi.acm.org/10.1145/1089014.1089021

[23] P. H. Hahn, W. G. Schmidt, F. Bechstedt, Bulk exci-
tonic effects in surface optical spectra, Phys. Rev. Lett.
88 (2001) 016402. doi:10.1103/PhysRevLett.88.016402.

[24] W. G. Schmidt, S. Glutsch, P. H. Hahn, F. Bechstedt, Effi-
cient O(N2) method to solve the bethe-salpeter equation,
Phys. Rev. B 67 (2003) 085307. doi:10.1103/PhysRevB.
67.085307.

[25] L. Hedin, New Method for Calculating the One-Particle
Green’s Function with Application to the Electron-Gas
Problem, Phys. Rev. 139 (1965) A796–A823. doi:10.
1103/PhysRev.139.A796.

[26] S. Louie, Predicting materials and properties: Theory of
the ground and excited state, in: S. G. Louie, M. L. Co-
hen (Eds.), Conceptual Foundations of Materials, Vol. 2
of Contemporary Concepts of Condensed Matter Sci-
ence, Elsevier, 2006, Ch. 2, pp. 9–53. doi:10.1016/
S1572-0934(06)02002-6.

[27] F. Bechstedt, Many-Body Approach to Electronic Excita-
tions, Vol. 181 of Springer Series in Solid-State Sciences,
Springer-Verlag Berlin Heidelberg, 2015. doi:10.1007/
978-3-662-44593-8.

[28] P. Hohenberg, W. Kohn, Inhomogeneous Electron Gas,
Physical Review 136 (1964) B864–B871. doi:10.1103/
PhysRev.136.B864.

[29] W. Kohn, L. J. Sham, Self-consistent equations including
exchange and correlation effects, Phys. Rev. 140 (1965)
A1133–A1138. doi:10.1103/PhysRev.140.A1133.

[30] A. Seidl, A. Görling, P. Vogl, J. A. Majewski, M. Levy,
Generalized kohn-sham schemes and the band-gap prob-
lem, Phys. Rev. B 53 (1996) 3764–3774. doi:10.1103/
PhysRevB.53.3764.

[31] A. Schleife, C. Rödl, F. Fuchs, J. Furthmüller, F. Bech-
stedt, Optical and energy-loss spectra of mgo, zno, and
cdo from ab initio many-body calculations, Phys. Rev. B
80 (3) (2009) 035112.

[32] A. Schleife, M. D. Neumann, N. Esser, Z. Galazka,
A. Gottwald, J. Nixdorf, R. Goldhahn, M. Feneberg, Opti-
cal properties of in2o3 from experiment and first-principles
theory: influence of lattice screening, New J. Phys. 20 (5)

(2018) 053016.
[33] X. Zhang, A. Schleife, Nonequilibrium bn-zno:

Optical properties and excitonic effects from
first principles, Phys. Rev. B 97 (2018) 125201.
doi:10.1103/PhysRevB.97.125201.
URL https://link.aps.org/doi/10.1103/PhysRevB.
97.125201

[34] I. S. Dhillon, B. N. Parlett, Multiple representations to
compute orthogonal eigenvectors of symmetric tridiagonal
matrices, Linear Algebra and its Applications 387 (2004)
1–28.

[35] P. Bientinesi, I. S. Dhillon, R. A. van de Geijn, A Par-
allel Eigensolver for Dense Symmetric Matrices Based on
Multiple Relatively Robust Representations, J. Scientific
Computing 27 (1) (2005) 43–66. doi:10.1137/030601107.

[36] T. Kalkreuter, H. Simma, An accelerated conjugate gra-
dient algorithm to compute low-lying eigenvalues?a study
for the dirac operator in su (2) lattice qcd, Comput. Phys.
Commun. 93 (1) (1996) 33–47.

[37] G. Kresse, J. Hafner, Ab initio molecular dynamics
for liquid metals, Phys. Rev. B 47 (1993) 558–561.
doi:10.1103/PhysRevB.47.558.
URL https://link.aps.org/doi/10.1103/PhysRevB.
47.558

[38] G. Kresse, J. FurthmÃĳller, Efficiency of ab-initio
total energy calculations for metals and semicon-
ductors using a plane-wave basis set, Computa-
tional Materials Science 6 (1) (1996) 15 – 50.
doi:https://doi.org/10.1016/0927-0256(96)00008-0.
URL http://www.sciencedirect.com/science/
article/pii/0927025696000080

[39] G. Kresse, J. Furthmüller, Efficient iterative schemes
for ab initio total-energy calculations using a plane-
wave basis set, Phys. Rev. B 54 (1996) 11169–11186.
doi:10.1103/PhysRevB.54.11169.
URL https://link.aps.org/doi/10.1103/PhysRevB.
54.11169

[40] D. S. Watkins, The Matrix Eigenvalue Problem: GR and
Krylov Subspace Methods, 1st Edition, Society for Indus-
trial and Applied Mathematics, USA, 2007.

[41] A. Schleife, F. Bechstedt, Ab initio description of quasi-
particle band structures and optical near-edge absorption
of transparent conducting oxides, J. Mater. Res. 27 (17)
(2012) 2180–2189.

[42] K. Kang, A. Kononov, C.-W. Lee, J. A. Leveillee, E. P.
Shapera, X. Zhang, A. Schleife, Pushing the frontiers of
modeling excited electronic states and dynamics to accel-
erate materials engineering and design, Comput. Mater.
Sci. 160 (2019) 207–216. doi:10.1016/j.commatsci.
2019.01.004.

[43] T. Imamura, S. Yamada, M. Machida, Development of a
High Performance Eigensolver on the Petascale next Gen-
eration Supercomputer System, Progress in Nuclear Sci-
ence and Technology 2 (2011) 643–650. doi:10.15669/
pnst.2.643.

[44] A. Marek, V. Blum, R. Johanni, V. Havu, B. Lang,
T. Auckenthaler, A. Heinecke, H.-J. Bungartz, H. Lederer,
The ELPA library: Scalable Parallel Eigenvalue Solutions
for Electronic Structure Theory and Computational Sci-
ence, Journal of Physics: Condensed Matter 26 (21) (2014)
213201. doi:10.1088/0953-8984/26/21/213201.

[45] W. zhe Yu Victor, C. Campos, W. Dawson, A. Garcìa,

17

http://doi.acm.org/10.1145/1089014.1089019
http://doi.acm.org/10.1145/1089014.1089019
http://doi.acm.org/10.1145/1089014.1089019
https://doi.org/10.1145/1089014.1089019
http://doi.acm.org/10.1145/1089014.1089019
http://doi.acm.org/10.1145/1089014.1089021
https://doi.org/10.1145/1089014.1089021
http://doi.acm.org/10.1145/1089014.1089021
https://doi.org/10.1103/PhysRevLett.88.016402
https://doi.org/10.1103/PhysRevB.67.085307
https://doi.org/10.1103/PhysRevB.67.085307
https://doi.org/10.1103/PhysRev.139.A796
https://doi.org/10.1103/PhysRev.139.A796
https://doi.org/10.1016/S1572-0934(06)02002-6
https://doi.org/10.1016/S1572-0934(06)02002-6
https://doi.org/10.1007/978-3-662-44593-8
https://doi.org/10.1007/978-3-662-44593-8
https://doi.org/10.1103/PhysRev.136.B864
https://doi.org/10.1103/PhysRev.136.B864
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1103/PhysRevB.53.3764
https://doi.org/10.1103/PhysRevB.53.3764
https://link.aps.org/doi/10.1103/PhysRevB.97.125201
https://link.aps.org/doi/10.1103/PhysRevB.97.125201
https://link.aps.org/doi/10.1103/PhysRevB.97.125201
https://doi.org/10.1103/PhysRevB.97.125201
https://link.aps.org/doi/10.1103/PhysRevB.97.125201
https://link.aps.org/doi/10.1103/PhysRevB.97.125201
https://doi.org/10.1137/030601107
https://link.aps.org/doi/10.1103/PhysRevB.47.558
https://link.aps.org/doi/10.1103/PhysRevB.47.558
https://doi.org/10.1103/PhysRevB.47.558
https://link.aps.org/doi/10.1103/PhysRevB.47.558
https://link.aps.org/doi/10.1103/PhysRevB.47.558
http://www.sciencedirect.com/science/article/pii/0927025696000080
http://www.sciencedirect.com/science/article/pii/0927025696000080
http://www.sciencedirect.com/science/article/pii/0927025696000080
https://doi.org/https://doi.org/10.1016/0927-0256(96)00008-0
http://www.sciencedirect.com/science/article/pii/0927025696000080
http://www.sciencedirect.com/science/article/pii/0927025696000080
https://link.aps.org/doi/10.1103/PhysRevB.54.11169
https://link.aps.org/doi/10.1103/PhysRevB.54.11169
https://link.aps.org/doi/10.1103/PhysRevB.54.11169
https://doi.org/10.1103/PhysRevB.54.11169
https://link.aps.org/doi/10.1103/PhysRevB.54.11169
https://link.aps.org/doi/10.1103/PhysRevB.54.11169
https://doi.org/10.1016/j.commatsci.2019.01.004
https://doi.org/10.1016/j.commatsci.2019.01.004
https://doi.org/10.15669/pnst.2.643
https://doi.org/10.15669/pnst.2.643
https://doi.org/10.1088/0953-8984/26/21/213201

V. Havu, B. Hourahine, W. P. Huhn, M. Jacquelin, W. Jia,
M. Keceli, R. Laasner, Y. Li, L. Lin, J. Lu, J. Moussa,
J. E. Roman, A. VÃązquez-Mayagoitia, C. Yang, V. Blum,
ELSI – An Open Infrastructure for Electronic Structure
Solvers, arXiv:1912.13403, arXiv preprint (12 2019).

[46] K. Goto, R. A. v. d. Geijn, Anatomy of high-performance
matrix multiplication, ACM Trans. Math. Softw. 34 (3)
(2008) 1–25. doi:10.1145/1356052.1356053.
URL http://portal.acm.org/citation.cfm?doid=
1356052.1356053

[47] K. Goto, R. van de Geijn, High-performance implementa-
tion of the level-3 BLAS, ACM Transactions on Mathe-
matical Software 35 (1) (2008) 1–14.

[48] J. Huang, L. Rice, D. A. Matthews, R. A. v. d. Geijn,
Generating Families of Practical Fast Matrix Multiplica-
tion Algorithms, in: 2017 IEEE International Parallel and
Distributed Processing Symposium (IPDPS), IEEE, Or-
lando, FL, USA, 2017, pp. 656–667. doi:10.1109/IPDPS.
2017.56.
URL http://ieeexplore.ieee.org/document/7967156/

[49] Jülich Supercomputing Centre, JUWELS: Modular Tier-
0/1 Supercomputer at the Jülich Supercomputing Centre,
Journal of large-scale research facilities 5 (A135) (2019).
doi:10.17815/jlsrf-5-171.
URL http://dx.doi.org/10.17815/jlsrf-5-171

[50] K. Hummer, C. Ambrosch-Draxl, Oligoacene exciton bind-
ing energies: Their dependence on molecular size, Phys.
Rev. B 71 (2005) 081202. doi:10.1103/PhysRevB.71.
081202.

[51] H. Takagi, H. Kunugita, K. Ema, Influence of the image
charge effect on excitonic energy structure in organic-
inorganic multiple quantum well crystals, Phys. Rev. B
87 (2013) 125421. doi:10.1103/PhysRevB.87.125421.
URL https://link.aps.org/doi/10.1103/PhysRevB.
87.125421

[52] D. N. Congreve, J. Lee, N. J. Thompson, E. Hontz,
S. R. Yost, P. D. Reusswig, M. E. Bahlke, S. Reineke,
T. Van Voorhis, M. A. Baldo, External quantum effi-
ciency above 100% in a singlet-exciton-fission–based or-
ganic photovoltaic cell, Science 340 (6130) (2013) 334–337.
doi:10.1126/science.1232994.

[53] J. Liu, B. Chandrasekaran, W. Yu, J. Wu, D. Buntinas,
S. Kini, D. K. Panda, P. Wyckoff, Microbenchmark per-
formance comparison of high-speed cluster interconnects,
Ieee Micro 24 (1) (2004) 42–51.

18

http://portal.acm.org/citation.cfm?doid=1356052.1356053
http://portal.acm.org/citation.cfm?doid=1356052.1356053
https://doi.org/10.1145/1356052.1356053
http://portal.acm.org/citation.cfm?doid=1356052.1356053
http://portal.acm.org/citation.cfm?doid=1356052.1356053
http://ieeexplore.ieee.org/document/7967156/
http://ieeexplore.ieee.org/document/7967156/
https://doi.org/10.1109/IPDPS.2017.56
https://doi.org/10.1109/IPDPS.2017.56
http://ieeexplore.ieee.org/document/7967156/
http://dx.doi.org/10.17815/jlsrf-5-171
http://dx.doi.org/10.17815/jlsrf-5-171
https://doi.org/10.17815/jlsrf-5-171
http://dx.doi.org/10.17815/jlsrf-5-171
https://doi.org/10.1103/PhysRevB.71.081202
https://doi.org/10.1103/PhysRevB.71.081202
https://link.aps.org/doi/10.1103/PhysRevB.87.125421
https://link.aps.org/doi/10.1103/PhysRevB.87.125421
https://link.aps.org/doi/10.1103/PhysRevB.87.125421
https://doi.org/10.1103/PhysRevB.87.125421
https://link.aps.org/doi/10.1103/PhysRevB.87.125421
https://link.aps.org/doi/10.1103/PhysRevB.87.125421
https://doi.org/10.1126/science.1232994

S1. Supplemental materials

In this section we report on additional data relative to the numerical tests described and discussed in
Sec. 4. Most of the data in presented in table formats with few additional comments on the data format and
its significance.

S1.1. Strong scaling tests
Table S1 and Table S2 report the full timings recorded for the ChASE and the CG solver, respectively.

The timing is broken into multiple main parts:

• Pre-reading: Before reading any matrices or actual data, these indicate the task of reading the input
parameters, initialization, or allocations, these are collected in one single timer.

• Read optics: After the initialization, the optical transition matrix elements, as well as the DFT energies
are read from the ground state calculation of the material system.

• Reading and building: This label indicates the task of proper reading and initializing the BSE matrix.
In the paper we have used the term I/O for this task. This is the first bottleneck for which the code was
modernized and where we observe substantial improvement with respect to the old code.

• CG/ChASE: This label corresponds to the time spent in obtaining the lowest set of eigenpairs of the
BSE Hamiltonian either using the Conjugate gradient solver or ChASE library. This is the second and
most substantial bottleneck of the BSE code and where we observe a marked difference with respect to
the old code.

• Total: This label indicates the sum of all timings above.

Table S1: Strong scalability test of the code with new reading routine and ChASE solver. For all different runs, 16 threads are
used per MPI rank and the data is averaged over 8 runs on the same node(s)

MPI ranks Pre-reading Read optics Reading/Building ChASE Total

1 26.26±0.04 26.29±0.01 791.16±19.69 2390.08±2.59 3235.15±19.43
4 29.91±0.13 30.03±0.01 374.26±7.21 617.83±2.63 1052.15±7.96
9 29.91±0.02 30.01±0.01 191.00±0.85 270.86±3.09 521.81±3.35
16 30.01±0.09 30.01±0.01 97.24±0.76 161.30±2.22 318.54±2.12
25 30.08±0.11 30.04±0.01 78.94±0.76 109.59±0.66 248.65±1.04
36 30.16±0.04 30.02±0.01 40.38±0.34 82.01±0.08 182.58±0.38
49 30.00±0.05 30.02±0.01 33.81±0.71 67.82±0.08 161.65±0.75
64 30.03±0.08 30.02±0.01 78.17±1.32 55.92±0.18 194.14±1.38

The average value and standard error of the timings are obtained through averaging over 8 runs on the
same computing node(s). The columns corresponding to the solvers and the I/O are repeated in Table 1. For
the sake of completeness we have reported here also timings for Pre-reading and Read Optics. The timings in
these two columns refer to an intrinsically sequential part of the code and do not scale. They also account for
a fraction of the two bottlenecks and that is why we do not have included or addressed them in the paper.

S1.2. Weak scaling tests
In this part, we show the data for the CPU-times for the weak scaling tests. For almost all simulations

on BW, the average and standard deviation of the time to solution are computed over 5 runs on the same
node(s). Only the simulations execute on 100 or larger computing nodes using the old code and solver have
been run only once. Due to the long duration, these latter executions were very costly in terms of computing

S1

Table S2: Strong scalability for the old reading and building routine and the KSCG solver. 16 number of threads are used per
MPI rank and the data is averaged over 8 runs on the same node(s).

MPI ranks Pre-reading Read optics Reading/Building KSCG Total

1 25.89±0.02 25.81±0.03 336.55±6.10 5515.65±4.64 5903.90±8.59
4 29.69±0.14 29.55±0.03 374.96±9.08 1554.04±0.93 1988.24±8.75
9 29.92±0.44 30.12±0.08 413.86±3.11 830.26±0.22 1304.17±3.48
16 29.68±0.07 29.63±0.06 408.63±7.45 592.23±1.27 1060.17±7.75
25 29.75±0.09 29.59±0.06 443.46±14.78 471.94±0.31 974.74±14.74
36 29.72±0.07 30.02±0.06 491.44±12.28 427.56±0.31 978.30±12.30
49 29.66±0.05 29.84±0.01 451.09±2.46 383.55±2.708 894.15±3.53
64 29.71±0.05 29.63±0.11 450.20±2.10 359.89±0.50 869.43±2.20

time. Moreover, the variation in timings also for smaller number of computing nodes was so negligible that
repeating the measurement would have brought no benefit to the statistics of the result. All executions are
performed with one MPI rank and 16 ranks per computing node.

Table S3: Results of the weak scaling tests on Blue Waters for both the old and new I/O and both solvers, ChASE and KSCG.
All simulations were executed with one MPI rank per node

MPI ranks Matrix size ChASE time (s) STDEV (s) KSCG time (s) STDEV (s) Speed up

1 38537 3188.35 10.89 5197.46 1.28 1.63
4 76887 2986.44 14.61 6701.22 2.06 2.24
9 115459 2672.35 21.04 6576.31 1.99 2.46
16 154023 4657.37 303.26 8036.14 1.37 1.73
25 192788 2443.02 17.20 8128.18 9.97 3.33
36 231011 3522.34 138.67 9072.10 1.75 2.58
49 269645 2615.52 61.03 10781.91 19.69 4.12
64 307865 3699.07 96.77 11736.11 2.99 3.17
81 346915 4771.18 97.73 12855.16 6.50 2.69
100 385183 6522.20 158.07 13755.39 - 2.11
121 423607 5408.97 111.74 15318.24 - 2.83
144 462469 4462.82 174.62 16123.97 - 3.61
169 500649 4172.64 237.95 17825.44 - 4.27

In Table S4 and S5 we report average timings and corresponding standard deviation for the procedures
internal to the ChASE eigensolver over 15 repetitions on the JUWELS cluster. The labels on the columns
indicates respectively:

• Lanczos: This a modified Lanczos algorithm to compute the approximate spectral density which is used
to estimate the value of λ1, λnev+nex and λN . This procedure is executed only once, the first time the
solver is invoked.

• Filter: The Chebyschev filter is the computational core of the solver and the most intensive in terms of
FLOPs. This is also the procedure that is most efficient since it is practically a repeated call to the HEMM
subroutine of the BLAS library. This routines and all the remaining below are executed at each internal
while loop of ChASE. Each repetition of the loop roughly corresponds to an iteration of the subspace
projection.

• QR: This column corresponds to a QR decomposition of the filtered vectors outputted by the Filter. It
is executed redundantly on each node.

S2

• RR: The Rayleigh-Ritz step corresponds to the projection unto the subspace spanned by the filtered
vectors Q outputted by the QR decomposition. It also includes the solution of the reduced eigenproblem
through a standard solver from the LAPACK library and a back-transformation of the approximate
eigenvectors. Both the projection and the back-transformation are executed by repeated invocation of
GEMM subroutines.

• Resid: This label indicates the computation of the eigenpairs residual and the deflation and locking of
converged vectors. Also in this case most of the computation is carried on using GEMM.

Table S4: Timings of the weak scaling tests on JUWELS for the CPU nodes. All values are averaged over 15 runs.

MPI (p) ChASE time (s) Lanczos (s) Filter (s) QR (s) RR (s) Resid (s)

4 85.68± 1.19 18.83± 0.42 58.07± 0.99 0.90± 0.01 2.90± 0.05 2.88± 0.05
16 82.12± 1.16 19.17± 0.84 53.31± 0.75 1.80± 0.04 3.07± 0.06 3.03± 0.06
36 111.66± 0.96 19.75± 0.86 76.28± 0.79 4.37± 0.08 4.43± 0.08 4.39± 0.13
64 105.99± 1.96 21.34± 1.61 67.71± 0.64 5.79± 0.13 4.58± 0.09 4.47± 0.19
100 102.28± 3.36 23.00± 2.96 62.09± 0.35 6.40± 0.15 4.66± 0.20 4.36± 0.13
144 107.43± 2.96 24.05± 2.94 63.67± 0.67 8.10± 0.24 5.04± 0.20 4.83± 0.17
196 126.05± 4.45 28.69± 4.13 71.37± 0.43 11.91± 0.24 6.21± 0.29 5.78± 0.15

All the calls to the BLAS subroutines are executed on the computing node either by calls to the corre-
sponding multi-threaded routines of the Intel MKL (Table S4) or the Nvidia CuBLAS library (Table S5). The
only exception is the QR decomposition which is always executed on the CPU and not on the GPU cards.
One can observe the effect of such implementation in the increasing values of the timings in the QR column
as the number of computing nodes gets larger. This is a limitation of the current algorithm in the ChASE
library. Future version of ChASE will feature a distributed QR decomposition and an automatic mechanism
which would switch from a redundant node-level execution to a full distributed one.

Table S5: Timings of the weak scaling tests on JUWELS for the GPU nodes. All values are averaged over 15 runs.

MPI (p) ChASE time (s) Lanczos (s) Filter (s) QR (s) RR (s) Resid (s)

4 33.54± 0.19 3.82± 0.04 17.37± 0.16 1.04± 0.02 0.63± 0.04 0.54± 0.01
16 31.99± 0.10 3.90± 0.07 15.87± 0.06 2.08± 0.03 0.92± 0.02 0.79± 0.01
36 49.42± 0.18 4.00± 0.05 25.05± 0.12 5.45± 0.07 1.61± 0.05 1.47± 0.05
64 45.85± 0.13 4.19± 0.04 20.88± 0.11 6.93± 0.07 2.00± 0.04 1.69± 0.04
100 44.25± 0.08 4.21± 0.05 19.48± 0.08 7.83± 0.04 2.27± 0.04 2.00± 0.09
144 48.97± 0.18 4.36± 0.07 21.18± 0.09 9.82± 0.05 2.77± 0.05 2.37± 0.05
196 59.36± 0.09 4.45± 0.07 24.26± 0.08 13.85± 0.04 3.55± 0.08 3.16± 0.11

In Table S6 we report the details of the runs of both CPU and GPU nodes of the JUWELS cluster including
the number of subspace iterations and mat-vec multiplications performed. These mat-vec are a breakdown of
all the single multiplications of the BSE matrix with the filtered vectors. Despite being counted as single mat-
vec for the purpose of having a measure of the complexity of the execution, all the operations are carried on by
multiplying the BSE matrix with a block of vectors. This strategy is at the base of the multiple invocation of
the BLAS level 3 routines. The ChASE algorithm, despite being an iterative algorithm, is quite deterministic.
Once a grid of computing nodes has being assigned, the solver performs the same number of iterations and
mat-vec multiplications to reach convergence independently if it is executed only on CPU cores or on a hybrid
combination of CPU and GPU cores. In other words the complexity of the algorithm does not change across
computing platforms.

S3

Table S6: Nodes configuration and number of iteration and mat-vec multiplications for the weak scaling tests on JUWELS for the
CPU and GPU nodes.

MPI Node level configuration Matrix Number of mat-vec
ranks CPU GPU size Iterations multiplications

OMP # GPU # OMP # GPU

4 12 0 10 4 38537 6 8960
16 12 0 10 4 76887 5 8160
36 12 0 10 4 115459 7 11360
64 12 0 10 4 154023 6 10020
100 12 0 10 4 192788 5 9340
144 12 0 10 4 231011 5 9540
196 12 0 10 4 269645 6 10620

In Table S7 we report benchmark timings of the two MPI calls that are used within the Filter procedure
using the OSU Micro-Benchmarks[S53]. Since this procedure takes a large percentage of the computing time
these benchmarks give a reasonable measure of the communication overhead experienced by the ChASE library.
As pointed out in Sec. 4.2, a number of factors contributes to the fluctuation of the total time to solution of the
ChASE solver. It is the combination of the variation of the total number of mat-vec, subspace iterations and
duration of the latency of the calls to MPI_Allreduce and MPI_Ibcast that contribute to the trend depicted in
Fig. 3. For instance, the latency time for the Ibcast increases steadily as more MPI ranks are used, contributing
positively to the total time. The same cannot be said for the latency of the Allreduce which benefits from a
number of MPI ranks equal to a powers of two. In particular this combination of factors explains the jump in
timings from 16 to 36 nodes due to all factors contributing positively, and especially the number of mat-vec
performed.

Table S7: Results of the Benchmark of MPI_Allreduce and MPI_Ibcast on the JUWELS cluster obtained using the OSU Micro-
Benchmarks.

#nodes MPI Message size Avg. Latency (µs) Avg. Latency (µs)
Ranks MPI_Allreduce MPI_Ibcast

1 4 16MB 12540.32 9482.64
4 16 16MB 15661.46 17102.91
9 36 16MB 21918.39 20391.34
16 64 16MB 17021.43 22392.87
25 100 16MB 23168.14 29695.72
36 144 16MB 21936.58 34585.03
49 196 16MB 23259.20 41008.10

S1.3. Dependence of the convergence rate of ChASE on nex
In this subsection, we illustrate the importance of choosing an nex value that maximizes the convergence

rate of ChASE without excessively increasing the complexity of the total execution. As an illustrative example
we report in Table S8 and S9 the value of some important parameters computed at the last step of the subspace
iteration using both a value nex = 25 and nex = 100 for the weak scaling test on BW.

• λnev is the value of the last desired eigenvalue computed by ChASE. In both tables nev = 100.

• α is an estimate of λnev+nex

S4

• β is an estimate of λN . This is computed by the Lanczos procedure and does not change for the remainder
of the ChASE execution.

• c and e are, respectively, the center and the half-width of the interval filtered out. They are computed
from the values of α and β.

• ρnev is the rate of convergence of the latest desired eigenpair. This is computed according to the following
formula.

|ρnev| = max
±

{∣∣∣∣γ − ce ±
√

(
γ − c
e

)2 − 1

∣∣∣∣
}

(S1)

Because of the design of the Chebyshev filter, such convergence rate is the worst among all sought after
eigenpairs. We report the inverse of such number which represent the dampening factor: the closest to 1,
the slower the eigenpair (λnev, xnev) would converge to a residual below the required tolerance threshold.

We use values computed during the last iteration since they are the closest to the corresponding unknown true
value of the parameter.

First, the dampening factor 1
ρnev

for nex = 100 is in general smaller than that for nex = 25. This is expected
and corresponds to better convergence of the iterations process as can be seen by the systematic lower number
of iteration to convergence for nex = 100. Within the same nex, the rate of convergence shows an increasing
trend as the number of computing nodes increases. Such behavior can be mainly attributed to the significant
increase in β as the matrix sizes increases. Unlikely the β values, the α ≈ λ̃nev+nex values show fluctuations
as the size of the matrix increases, the changes in both values leads to the variation in the dampening factor
which, in turn, influences the time-to-solution for the ChASE solver, as already pointed out is Sec. 4.2. The
observations above should be considered qualitative, as they only focus on the largest desired eigenvalue, and
on the last iteration. In practice, the actual convergence of the entire subspace of eigenvectors is a bit more
complicated, and it is influenced by the affective convergence rate of all the desired eigenvalues at each iteration.

Table S8: Detailed data for the convergence ratio for the largest desired eigenvalue λnev of the last step of iteration with nex = 25.

nodes λnev α β c e 1/ρnev # iterations

1 3.64939 3.75894 10.08705 6.92299 3.16406 0.76921 6
4 3.64930 3.73778 13.43655 8.58716 4.84939 0.82635 5
9 3.64924 3.76372 14.38214 9.07293 5.30921 0.81278 7
16 3.64915 3.73978 16.38626 10.06302 6.32324 0.84442 7
25 3.64914 3.80541 18.13631 10.97086 7.16545 0.81183 5
36 3.64910 3.73653 19.15953 11.44803 7.71150 0.86033 6
49 3.64909 3.73887 20.79428 12.26658 8.52770 0.86504 5
64 3.64905 3.73834 21.19633 12.46734 8.72900 0.86683 6
81 3.64904 3.73833 22.62650 13.18241 9.44409 0.87162 10
100 3.64902 3.74087 22.91544 13.32816 9.58728 0.87083 10
121 3.64903 3.76850 24.78667 14.27758 10.50909 0.86016 8
144 3.64903 3.81612 26.08816 14.95214 11.13602 0.84113 7
169 3.64899 3.81917 26.75923 15.28920 11.47003 0.84194 7

S1.4. Optimization of the nex value
In this section, we describe a simple method to optimize the choice of the nex value for the sequence of

eigenproblems of varying size used in the weak scaling test. First, we select a matrix at the beginning of the
sequence for which the value nex = 25 may not be ideal. This happen to be the eigenproblem with matrix
size N = 231,011 corresponding to an Ecut = 10.54 eV. We repeatedly solve this eigenproblem, each time

S5

Table S9: Detailed data for the convergence ratio for the largest desired eigenvalue λnev of the last step of iteration with nex = 100.

nodes λnev α β c e 1/ρnev # iterations

1 3.64939 7.17276 10.08705 8.62991 1.45715 0.14956 3
4 3.64930 7.85694 13.43655 10.64674 2.78981 0.20797 3
9 3.64924 8.61066 14.38214 11.49640 2.88574 0.19055 3
16 3.64915 3.90693 16.38626 10.14660 6.23966 0.75091 4
25 3.64914 4.33603 18.13631 11.23617 6.90014 0.64238 4
36 3.64910 4.33000 19.15953 11.74476 7.41477 0.65355 4
49 3.64909 4.32190 20.79428 12.55809 8.23619 0.66932 4
64 3.64905 3.98738 21.19633 12.59186 8.60448 0.75615 4
81 3.64904 3.91196 22.62650 13.26923 9.35727 0.78938 4
100 3.64902 3.97604 22.91544 13.44574 9.46970 0.76947 8

0 50 100 150 200
nex

2000

2500

3000

3500

4000

Ti
m

e
to

 s
ol

ut
io

ns
 (s

)

Figure S1: Optimization of the nex value for the 36 nodes matrix in the weak scaling test. All data points are averaged over three
runs, with the standard deviation plotted in dashed lines. The computational walltime first drops due to better convergence, then
increases due to large size of the eigenvectors.

slightly increasing the nex value. We expect to find a value of nex for which the computing time of ChASE is
minimized. Result of such a test are shown in Fig.S1. Inspecting the plot, the interval nex = 35 − 50 seems
to be the one within which the time-to-solution is likely to be minimal. We artificially set such a minimal
value to be 40. We define such a value to be the lower end of a linear regression of nex and label it as nexlow.
Correspondingly we label Ecut = 10.54 as Ecut-low. In order to avoid consuming too much computational time,
we limit our regression to Ecut = 12.82, which we label as Ecut-high, and calculate the corresponding values of
nex for intermediate Ecut values using the following formula

nex = nexlow +
nexhigh − nexlow

Ecut-high − Ecut-low
× (Ecut − Ecut-low). (S2)

Not knowing a priori the value of nexhigh, we choose two arbitrary values for nexhigh = 100, 150, and report
the regressed value of nex for intermediate values of Ecut in Tab.S10. We then tested these values by solving
the corresponding eigenvalue problems with them and comparing the time-to-solution to the one measured for
nex = 25, 100 across all problems. The results are plotted in Fig.S2. We observe that the nex values calculated
by regressions present an overall improvement with respect to the computing time when nex = 25 is used.
However, the same cannot be said when nex = 100 is used across the board.

S6

Table S10: nex values computed via linear interpolation between nexlow = 40 and nexhigh = 100, 150, respectively.

nodes (processors) Ecut (eV) nexhigh = 100 nexhigh = 150

36 10.54 40 40
49 11.15 50 58
64 11.73 59 75
81 12.30 68 91
100 12.82 76 106

While this experiment shows the potential to estimate the correct value of nex for increasing sizes of BSE
Hamiltonians, it also illustrate the non-linear behavior of the solver as the matrix become larger. In general,
it is advisable to increase the nex value as the matrix size increases, due to the fact that the largest eigenvalue
λN tends to increase, leading to the worsening of the convergence rate. However, linear scaling of the nex value
is probably not ideal. The effectiveness of nex is mostly influenced by the distribution of gaps in the spectrum
of the eigenproblem, which is by no means a linear function. Nonetheless, maintaining the same value of nex
across the board is definitely not advisable and a rule of thumb based on some sort of simple regression model
can save computing time for the user of ChASE.

10 100 1000
Number of processes

2000

3000

4000

5000

6000

7000

Ti
m

e
to

 s
ol

ut
io

ns
 (s

)

nex=100
nex=25
nexhigh=150
nexhigh=100

Figure S2: The effect of varying nex value across different matrix sizes with linear interpolation (orange and blue) and the
comparison with the weak scaling test with fixed nex (black and red). For both orange and blue curves, nexlow = 40, obtained
through the test in Fig.S1.

S7

	1 Introduction
	2 Modeling the Optical Properties of Materials
	3 The Computational Challenges
	3.1 A brief introduction to the BSE code
	3.2 Matrix generation and the I/O challenge
	3.3 Solving the BSE eigenvalue problem on massively parallel architectures

	4 Numerical experiments
	4.1 Strong scaling
	4.2 Weak scaling
	4.3 Search space and ChASE convergence
	4.4 A practical case: converging exciton-binding energy in naphthalene

	5 Summary and Conclusions

	S1 Supplemental materials
	S1.1 Strong scaling tests
	S1.2 Weak scaling tests
	S1.3 Dependence of the convergence rate of ChASE on nex
	S1.4 Optimization of the nex value

