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Strain and screening: Optical properties of a small-diameter carbon nanotube from first principles
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Carbon nanotubes (CNTs) are a one-dimensional material system with intriguing physical properties that lead
to emerging applications. While CNTs are unusually strain resistant compared to bulk materials, their optical-
absorption spectrum is highly strain dependent. It is an open question, as to what extent this is attributed to strain-
dependent (i) electronic single-particle transitions, (ii) dielectric screening, or (iii) atomic geometries including
CNT radii. We use cutting-edge theoretical spectroscopy to explain strain-dependent electronic structure and
optical properties of an (8,0) CNT. Quasiparticle effects are taken into account using Hedin’s GW approximation
and excitonic effects are described by solving a Bethe-Salpeter-equation for the optical polarization function.
This accurate first-principles approach allows us to identify an influence of strain on screening of the Coulomb
electron-electron interaction and to quantify the impact on electronic structure and optical absorption of one-
dimensional systems. We interpret our thoroughly converged results using an existing scaling relation and extend
the use of this relation to strained CNTs. We show that it captures optical absorption with satisfactory accuracy,
as long as screening, quasiparticle gap, and effective electron and hole masses of the strained CNT are known.
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I. INTRODUCTION

Carbon nanotubes (CNTs) possess interesting material
properties: their mechanical behavior is dominated by high
stiffness and large rupture strain [1–5], they are chemically
very stable [6,7], and show a sizable shift of electronic energy
levels as a function of axial strain [8–12]. This shift renders
optical transitions sensitive to strain, as has been observed
experimentally [13–16] and explained theoretically [17]. For
this reason, CNTs are excellent candidates for electronic
and optical strain sensing and optical strain characterization,
which is a promising technique due to the practical ease of
optical readout and the higher precision compared to alterna-
tive approaches such as indirect electronic characterization. In
particular, optical strain sensors with extremely high, mechan-
ically tunable sensitivity can be built in combined CNT/micro-
opto-electro-mechanical systems (MOEMS) [14,18–20].

Unfortunately, there is no simple, quantitative picture of
the explicit strain behavior of optical transitions, since their
dependence on the single-particle band gap of the CNT is not
straightforward [17]. This can partly be attributed to strong
many-body effects. In low-dimensional systems such as quasi-
one-dimensional (1D) CNTs, there is less surrounding mate-
rial than in bulk systems, leading to weak dielectric screening
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of the electron-electron and electron-hole interaction. As a
consequence, quasiparticle (QP) shifts can be as large as
1.2 eV and excitonic effects can be equally strong [17,21–25].
However, in order to achieve precise strain sensing based on
CNTs, a thorough understanding of electronic and optical
properties, as well as their strain dependence, needs to be de-
veloped. Quantitative insight is essential for the development
of MOEMS, such as strain-tunable emitters based on CNTs or
tunable optical sensors.

On a more fundamental level, CNTs are a well-suited test
bed for obtaining deeper insight into the physics of the strain
dependence of screening and, hence, the screened Coulomb
electron-electron interaction W . Understanding this is im-
portant for modern many-body perturbation theory, since in
GW approximation (GW ) and Bethe-Salpeter equation (BSE)
calculations, W plays a crucial role for the renormalization of
electronic QP energies and optical transition energies. Large
deformations are possible in CNTs before rupture, which
allows exploring a much larger strain range than in bulk
materials.

This understanding is also needed since difficulties often
arise during the interpretation of experiments, e.g., for exciton
binding energies. While in (homogeneous) bulk material,
a spatial average is a good approximation that describes
dielectric screening using a dielectric constant ε, this can-
not a priori be assumed for CNTs. The spatially resolved
dielectric function ε(r, r′) is needed because the material
response, i.e., screening, is restricted to the actual electron
density of the CNT [24] and is, thus, strongly direction depen-
dent. In reciprocal space, spatial resolution corresponds to a
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dependence on q = k − k′, which means that ε(q = k − k′)
must be considered instead of a constant ε. Dynamical screen-
ing is captured by the frequency-dependent dielectric function
ε(q, ω), which is required when energy-dependent integrals
occur.

Furthermore, as 1D materials, CNTs show negligible opti-
cal response perpendicular to the CNT axis, i.e., along the z
direction. Hence, screening ε(qz = k − k′) with q = qzez and
Brillouin zone (BZ) sampling are effectively 1D. This needs to
be taken into account when using analytical model functions
to describe dielectric screening, since usually their q depen-
dence is fitted to three dimensional (3D) semiconductors with
a dielectric constant as low-q limit [26]. However, in CNTs
the low-q (large distance) limit is vacuum screening [24,27].
Therefore the q dependence of ε and the emerging local-field
effects must be calculated accordingly. Nevertheless, in many
studies only the dielectric constant ε is used as a screening
model for the description of excitons in CNTs, since it is a
much simpler quantity [22,28,29]. This neglect of local fields
for the description of screening and the scaling of excitons
in CNTs with respect to their radius, as proposed by Pere-
beinos et al., [29], is an approximation that requires careful
revision.

In this work, we use first-principles electronic-structure
calculations to provide a deeper understanding of these ques-
tions. We use DFT [30,31] to compute ground-state geome-
tries and total energies of a small-diameter (8,0)-CNT in equi-
librium and under axial strain. Hedin’s GW approximation
[32] is used to account for QP effects on electronic energy lev-
els. Using the G0W0 approximation, we derive strain-induced
shifts of valence- and conduction-band energies and compare
to results from a computationally cheaper hybrid exchange-
correlation functional. Finally, by solving the BSE for the
optical polarization function [33] we account for excitonic
effects in optical-absorption spectra. We study the influence
of Coulomb truncation, a scheme used to mitigate finite-
size effects in supercell calculations for low-dimensional sys-
tems, on resulting optical spectra of the CNT under axial
strain.

These detailed calculations of optical transitions allow us
to disentangle the influence of strain on QP energies and on
excitonic effects. Using our data, we explore whether the
scaling relation by Perebeinos et al. [29], for the exciton
binding energy in different CNTs, also holds for strain in a
CNT. Finally, the relation between exciton binding energy,
reduced effective mass, and dielectric constant is explored.
The resulting strain dependencies of exciton binding energies
and optical transitions are essential ingredients for design and
layout of MOEMS.

The remainder of this work is structured as follows.
Section II summarizes technical aspects of DFT, GW , and
BSE calculations. In Sec. III, we use these techniques to
discuss the strain-dependent electronic structure based on
G0W0 and hybrid-functional calculations. The solution of the
BSE is shown and exciton binding energies are analyzed.
We then revisit the scaling relation of Ref. [29] and ex-
plore its applicability for the Coulomb-truncated case of a
strained CNT. Finally, Sec. IV summarizes and concludes our
work.

II. THEORETICAL APPROACH AND
COMPUTATIONAL DETAILS

A. Ground-state properties

We use DFT [30,31] to compute total energies and, via
minimization of Hellman-Feynman forces, optimized ground-
state geometries of a (8,0)-CNT in equilibrium as well as
under axial strain. For these calculations, the local-density
approximation (LDA) is used to describe exchange and corre-
lation [34] and the electron-ion interaction is described using
norm-conserving pseudopotentials based on the parametriza-
tion by von Barth and Car [35]. Wave functions are expanded
into a plane-wave basis up to a cutoff energy of 550 eV
(40 Ry). To ensure accuracy, we also tested a plane-wave
cutoff of 1100 eV (80 Ry), for which total energies are
converged up to 9 meV/electron (36 meV/atom). In both
cases, the resulting DFT as well as quasiparticle (QP) gaps
agree within 20 meV, which we include in our error bars for
QP energy calculations (see below). All DFT calculations are
carried out using the QUANTUM ESPRESSO code [36].

We construct a simulation cell that contains the (8,0)-CNT,
oriented along the z axis and surrounded by vacuum in the
other two directions. We choose a supercell size of 19.5 ×
19.5 × 4.26 Å

3
, such that two periodic images of CNTs are

separated by 13.2 Å. This is by far enough vacuum to obtain
converged results and to suppress finite-size effects in DFT
calculations for the neutral CNT. The geometry optimization
is performed using a 1 × 1 × 20 Monkhorst-Pack (MP) [37]
k-point grid and all atoms are relaxed until the remaining
forces are smaller than 0.01 eV/Å. All our results for relaxed
atomic geometries can be found in Ref. [38].

We then compare to calculations within the Vienna
ab initio simulation package (VASP) [39,40]. For these we
use the generalized-gradient approximation by Perdew, Burke,
and Ernzerhof [41] and the projector-augmented wave method
[42]. The calculations are carried out using a plane-wave
cutoff energy of 400 eV and the same k-point grid discussed
above. Relaxed atomic geometries from both approaches dif-
fer only very slightly (GGA introduces about 0.2% strain,
see Ref. [38]), which is reassuring for the comparison of
excited-state properties below.

B. GW calculations

In order to describe QP effects on electronic single-particle
energies, we use Hedin’s GW approximation for the elec-
tronic self energy [32]. We use the YAMBO package [43] to
compute QP energies within one step of perturbation theory,
i.e., without updating G or W , which is known as G0W0

approach. The fully frequency-dependent dielectric response
function ε(q, ω), that enters W , is computed within random
phase approximation (RPA) using real-axis integration. Local-
field effects play an important role and are converged for
a G-vector cutoff of 35 eV (≈2.4 Ry), which results in
less than 0.5% change of the dielectric function at several
q points with respect to the extrapolated value or less than
20 meV change in the G0W0 gap (see Fig. 2 in Ref. [38]).
Converged calculations require a 1 × 1 × 40 MP k-point grid
(1 × 1 × 60 MP k points in case of Coulomb truncation, due
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to the sharper profile of ε(qz ), see Ref. [21]) and at least 256
bands, which is four times the number of occupied states.
Thus the default parameter set is 256 bands and 60 k points
for GW calculations, unless other values are explicitly given.
In addition, the singularity of the Coulomb integral in k space
has to be circumvented, which is achieved using the random-
integration method (RIM) described by Marini et al. [43], for
GW calculations.

While the vacuum size in our supercell calculations is
sufficiently large to achieve convergence in DFT, a thorough
unit cell convergence is not feasible for the screened Coulomb
interaction W , due to its long-range character. The slow decay
of the Coulomb interaction with distance renders it impossible
to eliminate artificial interactions between periodic images
[44–47]. This can be compensated, e.g., when calculating
defect-formation energies, by subtracting the electrostatic
contribution of all repeating cells [45]. For converged calcu-
lations of W , Coulomb truncation schemes were developed
[21,44], the YAMBO implementation of which is used in this
work and described in Ref. [44]. Using this scheme renders
a lateral unit cell size of 19.5 Å and a truncation cylinder for
the Coulomb interaction (radius 9.75 Å) sufficient. All details
on convergence tests for k points, number of bands, cell size,
and Coulomb truncation, including the nontrivial convergence
studies with YAMBO, are described in detail in Ref. [38].

C. Bethe-Salpeter calculations

Excitonic effects are taken into account in the description
of optical absorption by solving a BSE for the optical po-
larization function [33]. For BSE calculations, the screened
electron-hole interaction W is computed using the static limit
of the response function and the same local-field effects as
for GW calculations [43,48]. Ten valence and ten conduction
bands are included for the solution of the BSE. Convergence
with respect to k points is achieved using a 2 × 2 × 80 MP
grid and the same lateral unit cell size of 19.5 Å is found to
be sufficient. These convergence tests are discussed in detail
in Ref. [38]. The YAMBO package (version 3.4.2) is used for
all GW and BSE calculations.

In order to better understand the influence of dielectric
screening, we compare YAMBO results to BSE calculations
from a recent VASP-based implementation [49,50]. These
are carried out using the same parameters as for YAMBO:
2 × 2 × 80 MP k points, ten valence and ten conduction
bands, as well as the same simulation cell size. Local-field
effects are included up to 35-eV G-vector cutoff, as dis-
cussed above for GW calculations. This allows calculating
exciton binding energies that are converged to within about
1% with respect to the dielectric G-vector cutoff. This er-
ror estimate stems from the extrapolation of the estimated
error of the dielectric function (see Fig. 2 in Ref. [38]).
An accurate extrapolation scheme is used to circumvent the
Coulomb singularity [50]. This BSE implementation currently
does not support Coulomb truncation to remove the interac-
tion between super cells, which is discussed in Sec. III E.
In order to study the influence of the screened interac-
tion W , we compare the results using a dielectric constant
to an analytical model dielectric function [51] for screen-
ing. This comparison allows us to quantitatively discuss the
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FIG. 1. G0W0 band structure (red dashed) is compared to scissor-
shifted DFT results (black solid). Besides the scissor shift, the
inset shows a linear dependence of quasiparticle (QP) shifts on KS
eigenvalues. The fit shows that the GW valence band is stretched by
about 1.15 and the GW conduction band by about 1.06 with respect to
corresponding KS bands. The Fermi level of the GW band structure
is chosen to be at zero energy.

interplay between Coulomb truncation, screening, and strain
effects.

III. RESULTS AND DISCUSSION

A. Electronic structure of the unstrained (8,0)-CNT

In Fig. 1, band structures computed using DFT (scissor-
shifted to 1.84 eV) and G0W0 are compared. Our G0W0 gap
of 1.84 ± 0.02 eV (1.81 ± 0.02 eV when extrapolated to an
infinite number of bands and k points, see Ref. [38]) agrees
very well with early work by Spataru et al., who reported 1.75
eV [21], and later work by Lanzillo et al., who reported 1.81
eV [52]. The small difference to Spataru et al. [21] can be
explained by slightly different computational parameters: they
used the plasmon-pole approximation (PPA) to describe the ω

dependence of the dielectric function and a slightly smaller
16-Å unit cell with Coulomb truncation beyond 7-Å cylinder
radius.

The inset of Fig. 1 shows that G0W0 QP shifts depend
approximately linearly on DFT Kohn-Sham (KS) eigenvalues.
In addition to the scissor shift that opens up the gap, band
stretching parameters β describe the linear slope. We find that
valence bands (VB) and conduction bands (CB) are stretched
by βvb = 1.15 and βcb = 1.06. This implies a small correction
of effective masses, mGW = √

β mDFT, and needs to be taken
into account when solving the BSE with much finer k-point
sampling.

In order to calculate effective masses of the π bands,1 we
use a hyperbolic fit that resembles the G0W0 bands as closely
as possible [12]. The expression stems from the tight binding
(TB) zone folding approach together with the Dirac cone

1Only the π bands are optically active and their effective masses
play an important role when comparing to results from BSE calcula-
tions.
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approximation [53] for describing CNT band structures. The
fit to DFT data yields effective masses of mDFT

cb = 0.422 m0

for the conduction and mDFT
vb = 0.310 m0 for the valence band.

The effective masses of the respective G0W0 bands are mcb =
0.418 m0 and mvb = 0.278 m0, in quantitative agreement with
band stretching.

B. Hybrid functional for approximate QP energies

The QP correction of the DFT gap within the G0W0 ap-
proach is sizable: the extrapolated shift is 1.21 ± 0.02 eV,
compared to a DFT gap of 0.60 eV. This large shift is
attributed to weak dielectric screening in the 1D CNT, clearly
indicating the need for using a QP correction scheme. Unfor-
tunately, the G0W0 approach is computationally expensive and
becomes unaffordable, e.g., when a large number of CNTs
or many different strained configurations are studied. For
these cases, an approximate description of QP corrections is
beneficial and using a hybrid exchange-correlation functional,
such as the one by Heyd, Scuseria, and Ernzerhof (HSE06)
[54–56] has proven successful. It comes at much reduced
computational cost, since no Coulomb truncation or expensive
convergence with respect to empty states is needed. For the
(8,0)-CNT, the reduction of cost is about a factor of 6.

The HSE06 functional contains 25% of Hartree-Fock (HF)
exact exchange and leads to a band gap of 1.06 eV for the
(8,0)-CNT. Increasing the fraction of HF exchange to 66%
reproduces the G0W0 band gap (see details in Ref. [38]).
Such a large fraction of HF exact exchange is not unusual
for low-dimensional systems since screening is much weaker
than in bulk materials, revealing almost bare electron-electron
interaction. Clearly, using a hybrid exchange-correlation
functional without adjusting the mixing parameter does not
give correct band gaps for CNTs. As an example, the work
of Matsuda et al. publishes a band gap of about 1.28 eV for
the (8,0)-CNT, using the B3LYP functional without adapting
the mixing parameter [57]. Next, we investigate whether the
same fixed fraction of HF exchange results in sufficiently
precise strain-dependent band gaps for the (8,0)-CNT,
compared to G0W0 results.

C. Electronic structure of the strained (8,0)-CNT

To investigate the strain dependence of the electronic struc-
ture, Fig. 2 shows fundamental gaps computed using DFT,
modified HSE06, and G0W0, and band stretching parameters
for several relative axial strains up to 6%. This illustrates the
strong dependence of the fundamental gap on strain, which is
significantly enhanced when QP effects are included, as seen
from the different slopes of blue and green curves in the left
panel of Fig. 2.

This effect can be understood by invoking strain-dependent
dielectric screening, in addition to strain-dependent shifts of
KS eigenvalues computed in DFT (blue curve in Fig. 2): The
smaller the band gap of the strained CNT, the stronger the
dielectric screening, and, thus, the weaker is the electron-
electron repulsion. Since QP shifts are small in a material with
strong dielectric screening, the G0W0 gap of the CNT with the
largest axial strain (smallest gap) is closer to the DFT gap than
for less strained CNTs.

FIG. 2. (Left) Band gaps of DFT, G0W0, and modified HSE06
calculations (66% HF exact exchange) for the (8,0)-CNT under strain
ε. (Right) Band stretching parameters βCB,VB of G0W0 and unmodi-
fied HSE06 calculations under strain (256 bands and 1 × 1 × 60 k
points). The blue dashed line indicates the DFT-LDA reference.

Figure 2 also illustrates that the band gap computed using
the modified HSE06 functional with 66% exact exchange is
very similar to the one computed using the G0W0 approach
for all strains investigated here. The remaining difference is
less than 0.1 eV, showing that axial strains up to ≈ 6% have
no influence on the required amount of HF exchange.

We also note that while band stretching β differs between
CB and VB, it only slightly changes with strain: βcb is reduced
from 1.06 to 1.00 at 6% strain and βcb remains at a constant
value of 1.15. The strain dependence of QP corrections mod-
ifies the strain-dependent effective mass of the CB by less
than 3%. The VB is stretched by 15% (7% change of the
effective mass), independent of the strain value. Overall, this
means that the ratio of DFT and GW corrected effective mass
is close to 1.0 and, thus, barely strain dependent. However, the
absolute value of the effective mass [either from GW or from
DFT] is strongly strain dependent as discussed in Sec. III F
(see Fig. 6).

D. Optical properties of the strained (8,0)-CNT

We now discuss the strain dependence of the optical spec-
trum via strain-induced shifts of the transitions E11, E22, E33,
and E ′

11 as depicted in Fig. 3, where the index nn indicates
allowed transition from the nth π -VB to the nth π -CB [58].
The unprimed transitions denote first-order excitons, whereas
the primed transition E ′

11 is a second-order exciton (n = 2)
that originates from the same electronic bands as E11. This
assignment relies on the numerical diagonalization of the
exciton Hamiltonian, whose eigenstates are superpositions of
noninteracting KS states. We analyzed these contributions
for the different strained cases (see details in Ref. [38]) and
our assignment agrees with Spataru et al. for the unstrained
case [21]. In the following, results with and without Coulomb
truncation are discussed and the origin of the exciton binding
energy is investigated. The visualization of strain-dependent
optical transitions in Fig. 4 shows that the first and second
optical transition shift in opposite directions under strain.
This is consistent with the most simple TB calculation of the
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FIG. 3. Strain-dependent optical spectra of the (8,0)-CNT com-
puted using the BSE approach with Coulomb truncation. The E11 and
E ′

11 transitions shift to lower energies, whereas E22 and E33 shift to
higher energies. E ′

11 denotes a higher-order exciton (n = 2). Black
lines are guides to the eye to highlight the shift of transitions.

CNT electronic bands with the zone-folding method applied
to (strained) graphene [8], which predicts a downshift of
CNT bands with strain for odd transitions (n = 1, 3, . . . ) and
upshifts of even CNT bands (n = 2, 4, . . . ).

In contrast to this TB picture, we observe an upshift for the
third optical transition that we attribute to σ -π hybridization.
Since the curvature of the (8,0)-CNT is large, σ and π

bands hybridize and the respective band energies are lowered.
This effect becomes stronger for higher bands and leads to
reordering of the n = 3 and n = 4 states. As a consequence,
the third optical transition shifts in the direction opposite to
what is predicted by the zone-folding model, which does not
include an effect of a curved CNT surface.

For the (8,0)-CNT, the first optical transition E11, which
is often observed in photo- or electroluminescence, appears
in the infrared and shifts towards lower energies. For the
unstrained CNT, we observe E11 at 1.51 ± 0.03 eV, which is
nearly identical to 1.55 eV reported by Spataru et al. [21]. We

FIG. 4. Optical transition energies for the strained (8,0)-CNT
with (BSE, blue solid) and without (GW , black dashed) excitonic
effects, that shift strongly with applied axial strain, covering the
visible spectral range.

FIG. 5. The first three optical transitions computed with YAMBO

using random-integration method (RIM) and homogeneous screen-
ing (“YAMBO RIM”) for the 19.5-Å unit cell. For comparison, the
result with Coulomb truncation is included (“YAMBO trunc”).

explain the small difference with the slightly different gaps,
the use of RPA instead of PPA, and the slightly smaller unit
cell.

Under strain, the GW +BSE result for the E11 transition
shows a downshift to 1.02 eV at 6% tensile strain. Quali-
tatively, this trend follows the GW results, but the exciton
binding energy EB, defined as difference between GW (dashed
black line in Fig. 4) and GW +BSE transition (blue line with
markers in Fig. 4), significantly reduces with strain. We ex-
plain this via the strain-induced increase of the dielectric con-
stant, i.e., screening (see Fig. 6 and discussion in Sec. III F),
that leads to a reduction of the exciton-binding energy.

The E22 and higher transitions are observed in opti-
cal absorption, photoluminescence (PL) [15,58,59], Rayleigh
scattering [60,61], and via photocurrents due to absorption
[62–64]. Figure 3 illustrates that E22 and E33 each consist of a
series of peaks. Their intensity-weighted average, depicted in
Fig. 4, shows that E22 and E33 shift approximately linearly in
energy with strain by a large value of about 200 meV/%. For
larger strained armchair CNTs, such as (11,0) and (17,0), that
show a reduced σ -π hybridization, this value is only about
150 meV/% [17]. Since these CNTs should possess about the
same strain dependence within the TB model with the zone
folding scheme, it appears that the σ -π hybridization itself is
strain dependent. This leads to an enhanced strain sensitivity
of electronic bands and corresponding optical transitions of
the (8,0)-CNT.

E. Exciton binding energies and long-range
Coulomb interaction

In order to understand the physics of screening in strained
CNTs, we compare BSE results with and without the
Coulomb truncation scheme used for eliminating artificial
Coulomb interactions of CNTs in adjacent super cells. We
use YAMBO and the random-integration method (RIM) to
solve the BSE for the untruncated case and compare to the
truncated case in Fig. 5. We also compare to the VASP-BSE
implementation, which uses a different solver [50] and find
that both codes agree almost perfectly, as documented in
Ref. [38].
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Figure 5 shows that optical transitions appear at lower
energies when the Coulomb interaction is truncated, which
means that corresponding exciton binding energies are larger.
While in the untruncated case the electron-hole interaction is
(artificially) affected by periodic images over long distances,
in the truncated case, no periodic images are present and
only the much smaller vacuum screening contributes. Thus
the truncation affects the low-qz behavior of ε(qz ), which
determines the screening of the electron-hole interaction in the
long-range limit. The reduction of screening for low qz due
to Coulomb truncation explains the enhancement of exciton
binding energies. Next, we establish detailed, quantitative
insight into the scaling of exciton-binding energies with strain.

F. Scaling of the exciton binding energy with strain

Figure 5 also illustrates that the energies of optical tran-
sitions for untruncated and truncated cases depend on strain
and approach each other for large strain. The reason is that
the band gap is reduced with increasing strain, leading to
increased screening that even becomes metallic for about 9%
strain. In the metallic case, the truncation has almost no effect
on the, then very large, screening [21].

This effect of strain-dependent screening on exciton bind-
ing energy and GW gap does not just occur in 1D materials
such as CNTs: The exciton binding energy in bulk ZnO
decreases from approximately 70 to 55 meV between +2%
and −2% strain due to different screening, see Ref. [65].
The effect is smaller in bulk, compared to low-dimensional
systems, since screening is much stronger in 3D. For various
2D materials with band gaps less than about 2 eV, where
screening effects are almost as strong as in CNTs, Zhang et al.
showed that there is a simple, almost linear dependence of
the exciton binding energy on the fundamental band gap [66].
They also showed that the absolute exciton binding energy is
about 50% of the band gap and reported that it changes as the
band gap changes, e.g., due to strain.

Next, we interpret the strain dependence of the exciton-
binding energy via a scaling relation: Perebeinos et al. derived
this for CNTs using a TB Hamiltonian together with an Ohno
potential in order to solve the BSE [29]. By introducing a
single parameter α, they extended the well-known exciton
scaling relation in homogeneous, isotropic materials [67],
EB ∼ μeffε

−2, to

EB ≈ ABμα−1ε−αrα−2
CNT, (1)

where AB is the exciton-binding energy in a reference state,
rCNT is the CNT radius, μ the reduced mass of electron and
hole, and ε is the dielectric constant. Perebeinos et al. found
a value of α = 1.40 for ε > 4 for CNTs. An independent
confirmation of the parameter is given by Pedersen, who
predicted a scaling of EB ∼ r−0.6

CNT using a variational approach
for wave functions on a cylinder surface and homogeneous,
background dielectric screening [22,28]. This result corre-
sponds to the same value of α=1.4 and ∼rα−2

CNT. While the
above relations were developed for a background dielectric
screening, we now show that this screening (i.e., no Coulomb
truncation) and local fields (i.e., with Coulomb truncation) are
related.

FIG. 6. Strain-dependent reduced effective mass, dielectric con-
stant (for the 19.5-Å unit cell), and CNT radius. These parameters
enter the scaling relation for the exciton binding energy, Eq. (1).

To analyze the validity of this scaling relation for CNTs
under strain, we depict our first-principles results for the three
materials parameters that enter Eq. (1) in Fig. 6. The dielectric
constant is obtained from RPA calculations using YAMBO and
the reduced effective mass results from our G0W0 data. This
figure shows that the CNT radius depends only weakly on
strain; the Poisson ratio of about 0.2 leads to a shift in the
exciton binding energy of about 0.7% at 6% tensile strain.
Conversely, the electronic structure is much more sensitive,
leading to significant changes of effective masses and, via the
fundamental gap, of the dielectric constant [8,9,11,12]. The
two parameters μ and ε, thus, determine the influence of strain
on the exciton binding energy via Eq. (1).

In order to compare this to our BSE results, we depict the
strain-dependent exciton-binding energy of the E11 transition
in Fig. 7. These data are computed using the strain-dependent
dielectric function ε(qz ) for screening of the electron-hole
interaction and we compare results based on Coulomb trun-
cation (see Fig. 8) to those computed without the truncation
scheme. As expected, the resulting exciton binding energies
differ in magnitude, since the underlying screening models
deviate between truncated and nontruncated case, especially
for low qz (see Ref. [38]).

FIG. 7. Scaling of the strain-dependent exciton binding energy
EB of the E11 transition with (“YAMBO trunc”) and without Coulomb
truncation (“YAMBO RIM”). Symbols represent BSE results and
dashed lines represent the scaling relation, Eq. (1), with different
values of α. The value of 1.40 given by Perebeinos et al. [29] is
compared to a fit to BSE data. (Inset) Data for the Coulomb-truncated
case as a function of the scaling parameter μα−1ε−αrα−2.
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FIG. 8. In (a), the real part of the dielectric loss function ε−1(q) is
shown vs strain. Squares represent first-principles data with Coulomb
truncation and lines represent the model fit using Eq. (2). (b) and (c)
The fit coefficients C1 and C′

2 as a function of ε and E11, respectively.

More importantly, Fig. 7 illustrates that the scaling relation,
Eq. (1), holds: fitting to results without Coulomb truncation
yields a value of α ≈ 1.29 ± 0.03 and shows almost perfect
agreement with our data, despite the fact that BSE calculations
take local-field effects into account, whereas Eq. (1) was
derived under the assumption of a constant, homogeneous
dielectric screening. Since there may be a significant influence
from strong σ -π hybridization due to CNT curvature, it is
not surprising that the value of α slightly differs from 1.40
given by Perebeinos [29]. We note that the data in Fig. 7 were
computed using YAMBO; VASP data are shown in Ref. [38].

Fitting to data with Coulomb truncation yields a slightly
different value of α ≈ 1.21 ± 0.03, since local-field effects
with Coulomb truncation are not captured by the static, homo-
geneous screening entering the TB models used by Pedersen
[22,28] or Perebeinos [29]. While this difference in α is, thus,
not a surprise, it is remarkable that the scaling relation also
holds in the Coulomb-truncated case, and we explore this in
more detail in the next section. We point out that for this fit,
we used the dielectric constant from the untruncated case (see
Fig. 6) to mimic background screening, since Coulomb trun-
cation would imply ε = 1.0. This is also addressed in the next
section, where we introduce a geometry-dependent parameter
C1 to substitute ε in the scaling relation. It characterizes the
inhomogeneity and describes screening for confined carriers
in the truncated geometry.

G. Inhomogeneous dielectric screening and scaling relation

For a single CNT, as a localized, spatially inhomogeneous
system, the wave-vector dependence of ε(qz ) is crucial when
describing screening [21,24,46,68]. In order to incorporate
this into the scaling relation, we use the analytic expression
for the dielectric function of an infinite 1D cylinder, derived

by Deslippe et al. [24], using the Penn model [69]:

ε−1
1D (qz ) = 1 + χ (qz ) vtrunc(qz )

≈ 1 − C2
R

E11

C1q2
z

1 + C1q2
z

[2 I0(qzR) K0(qzR)]

= 1 − C′
2R

C1q2
z

1 + C1q2
z

[2 I0(qR) K0(qzR)]. (2)

Here, C1, C2, and C′
2 = C2/E11 are constants and R is the

CNT radius. I0 and K0 are modified Bessel functions of the
first and second kind, respectively. We fit this expression to
our first-principles data for ε(qz ) in Fig. 8 and observe very
good agreement. This means that the model of the 1D cylinder
mimics screening in a CNT, once the influence of the supercell
is removed via Coulomb truncation.

As shown in Fig. 8, the resulting fit parameter C1 linearly
depends on the strain-dependent dielectric constant ε; C′

2 is
strain independent. Therefore C1 carries the strain dependence
of the screening function that was described by ε before
Coulomb truncation was applied. The relation between C1 and
ε is almost linear, which explains why the scaling relation,
Eq. (1), also holds in the case of Coulomb truncation. We can,
therefore, rewrite Eq. (1) using C1 instead of ε:

EB = ABrα−2
CNTμα−1C−α

1 . (3)

Hybrid DFT calculations can then yield effective masses
and, after adjusting the fraction of exact exchange, strain-
dependent corrected gaps. In combination with the RPA, these
calculations also yield the inhomogeneous screening as a
function of strain and, thus, the parameter C1. This shows that
for an isolated, strained CNT, the exciton-binding energy can
be related to that of the unstrained state by means of a scaling
relation, Eq. (3).

IV. CONCLUSIONS

We use first-principles electronic-structure calculations,
based on the GW +BSE approach, to compute strong, strain-
related shifts of peaks Enn in the optical-absorption spectrum
of an (8,0)-CNT, consistent with earlier literature. We find that
the exciton binding energy in strained CNTs is a function
of the band gap and our work leads to the important con-
clusion that this arises directly from strain-dependent inho-
mogeneous dielectric screening. This shows that deformation
potentials of electronic eigenvalues and exciton binding en-
ergies need to be considered explicitly, in order to predict
strain-dependent optical spectra of CNTs.

While this implies that the effect of many-body physics on
optical spectra in strained CNTs is crucial, we then show that a
more simple scaling relation for the exciton binding energy is
applicable also to strained CNTs. This scaling relation allows
us to extrapolate the shift of optical transitions from the un-
strained state to the strained state, based on the strain-induced
shift of electronic energy levels and the strain dependence of
ε(q) and μ. We then showed that the modified HSE06 hybrid
functional, with a fraction of 66% exact exchange, mimics
QP corrections for the unstrained CNT quite well, allowing
us to avoid expensive GW calculations of strained CNTs to
determine these parameters.
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Finally, we provide detailed understanding of why the
scaling relation works for strained CNTs, even though it relies
on the dielectric constant as a parameter and neglects the
influence of local-field effects. To this end, we demonstrate
that in low-dimensional materials, a wave-vector dependent
screening function ε(qz ) must be used. In addition, in first-
principles excited-state calculations, the Coulomb interaction
must be truncated in order to obtain supercell convergence,
which influences the long-range, low-qz part of the screening
function. We show that a suitable screening function ε(qz )
for CNTs can be obtained from a 1D Penn model of a
charge on an infinitely long, hollow cylinder and connect the
parameters of this model to our first-principles data, leading
to an excellent fit. We envision that this significantly advances
the study of optical transitions in strained CNTs and enables
broader applications of this interesting material system.
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