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1. Introduction

In metals, charge carriers can be excited 
by visible wavelength light to form col-
lective oscillations and intraband transi-
tions near the Fermi level correspond to 
plasmon oscillations of the electrons. Once 
excited, plasmons will either be local-
ized on interfaces due to the finite extent 
of the metal, forming localized surface 
plasmon resonances (LSPRs), or propa-
gate along extended interfaces as surface 
plasmon polaritons (SPPs).[1,2] The field 
of plasmonics seeks to precisely manipu-
late light at the nanoscale, with promising 
applications including subwavelength 
waveguides,[3,4] nanoantennas,[5] super-
lenses,[6] subwavelength imaging,[7] nano-
circuitry,[8,9] and biosensors.[10] Control of 
such excitations requires consideration of 
both the material used and the geometry 
into which it is shaped.

Finding new metals or doped semicon-
ductors which may act as viable candi-
dates for plasmonic applications remains 
an outstanding problem.[11] Filled states 

near the Fermi level contribute electrons capable of under-
going plasmon oscillations and empty states above the Fermi 
level become filled by the intraband transitions. Interband 
transitions, however, do not contribute to plasmon oscillations 
and exciting them via photon absorption is a loss mechanism. 
Hence, a perfect plasmonic metal would have electrons near 
the Fermi level able to propagate through the material with low 
intraband loss and no interband transitions. High electrical 
conductivity is a beneficial characteristic, since it indicates weak 
scattering of electrons as they propagate through the material, 
that is, low loss due to electron–electron scattering of conduc-
tion electrons.[1] However, it is not a sufficient criterion because 
weak electron–electron scattering does not preclude the pos-
sibility of light being absorbed by interband transitions rather 
than exciting propagating electronic modes along the metal–
dielectric interface.[12]

A wave optical treatment using Maxwell equations  imposes 
that the real part of the dielectric function due to electronic 
intraband transitions near the Fermi level is negative:[1] This 
derives from solving Maxwell’s equations near the metal–dielec-
tric interface, where continuity of the appropriate components 
of the electric field and displacement field must be enforced. 
Further, the electromagnetic mode on the surface must propa-
gate along the interface and decay exponentially with distance 
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oscillations due to intraband transitions is an outstanding challenge. This 
is viewed as a materials selection problem that bridges the gap between 
the large number of candidate materials and the high computational cost 
to accurately compute their individual optical properties. To address this, 
online databases that compile computational data for numerous properties 
of tens to hundreds of thousands of materials are combined with first-
principles simulations and the Drude model. By means of density functional 
theory (DFT), a training set of geometry-dependent plasmonic quality factors 
for ≈1000 materials is computed and subsequently random-forest regressors 
are trained on these data. Descriptors are limited to symmetry, quantities 
obtained using the chemical formula, and the Mendeleev database, which 
allows to rapidly screen 7445 candidates on Materials Project. Using DFT to 
compute quality factors for the 233 most promising materials, AlCu3, ZnCu, 
and ZnGa3 are identified as excellent potential new plasmonic metals. This 
finding is substantiated by analyzing their electronic structure and interband 
optical properties in detail.

E. P. Shapera
Department of Physics
University of Illinois at Urbana–Champaign
Urbana, IL 61801, USA
A. Schleife
Department of Materials Science and Engineering
University of Illinois at Urbana–Champaign
Urbana, IL 61801, USA
E-mail: schleife@illinois.edu
A. Schleife
Materials Research Laboratory
University of Illinois at Urbana–Champaign
Urbana, IL 61801, USA
A. Schleife
National Center for Supercomputing Applications
University of Illinois at Urbana–Champaign
Urbana, IL 61801, USA

The ORCID identification number(s) for the author(s) of this article 
can be found under https://doi.org/10.1002/adom.202200158.

ReseaRch aRticle

© 2022 The Authors. Advanced Optical Materials published by Wiley-
VCH GmbH. This is an open access article under the terms of the 
 Creative Commons Attribution-NonCommercial License, which permits 
use, distribution and reproduction in any medium, provided the original 
work is properly cited and is not used for commercial purposes.

Adv. Optical Mater. 2022, 10, 2200158

http://crossmark.crossref.org/dialog/?doi=10.1002%2Fadom.202200158&domain=pdf&date_stamp=2022-08-04


www.advancedsciencenews.com

© 2022 The Authors. Advanced Optical Materials published by Wiley-VCH GmbH2200158 (2 of 16)

www.advopticalmat.de

from the interface. Enforcing these conditions produces the 
constraints

( ) ( ) 0m o d oε ω ε ω× <  (1)

( ) ( ) 0m o d oε ω ε ω+ <  (2)

where εd and εm are the dielectric functions of the dielectric and 
the metal, respectively, at operating frequency ωo. This Maxwell-
imposed criterion is often satisfied in metals since the intra-
band dielectric function within the Drude model automatically 
satisfies it for all frequencies below the plasma frequency.[2] 
The interband contribution to the dielectric function does not 
generally satisfy this criterion. In summary, a good plasmonic 
material then fulfills ωo < ωp along with weak interband contri-
butions to the dielectric function. Practical applications would 
also require that candidate materials be chemically stable and 
easy to synthesize.

In this work we view controlling plasmonic response to an 
applied optical field as a materials selection problem. The above 
criterion of ωo  < ωp leaves open the question of how much 
larger than ωo should ωp be. The quality factor of the plasmonic 
oscillation is maximized by selecting a material with as high a 
plasma frequency as possible, even into the UV region. Typi-
cally used plasmonic metals include Ag (ωp  = 9.0 − 9.6 eV), 
Au (ωp  = 8.5 − 9.0 eV), and Al (ωp  = 12 − 15 eV).[1,13,14] There 
are also applications in which the plasmonic material is struc-
tured to have a surface plasma frequency close to the operating 
frequency.[15–18] In this work, we take a quality-factor-based 
approach and seek to find large bulk plasma frequency mate-
rials. This method can be readily adapted to search for any 
particular range of plasma frequencies. We also limit computa-
tions to finding bulk plasma frequencies as opposed to surface 
plasma frequencies due to the computational cost of simulating 
a surface as opposed to the bulk, as well as the complications of 
choosing which surfaces to simulate.

In order to facilitate and accelerate materials selection, pub-
licly accessible online databases have compiled both experi-
mental and computational data for numerous properties of 
tens to hundreds of thousands of materials. In particular, the 
desirable balance of low computational cost and high accu-
racy of density functional theory (DFT)[19] recently lead to pro-
jects[20–23] that contain structural information and detailed 
electronic-structure data such as band structures and densities 
of states for materials that were previously synthesized and are 
reported, for example, in the Inorganic Crystal Structure Data-
base[24] or Novel Materials Discovery (NOMAD) repository.[25] 
DFT-based databases have previously been used to design scin-
tillator materials,[26] to study optical effects in calcites,[27] to find 
trends in total energy and enthalpy of formation,[28] for Li-ion 
battery design,[29] to screen electrocatalytic materials,[30] to iden-
tify novel solar-cell absorbers,[31] and for materials selection for 
semiconductor heterojunctions.[32]

While databases contain DFT results for crystal structures 
and electronic band structures, calculations of optical proper-
ties such as the dielectric function are usually not available. 
Here, we employ high-throughput DFT calculations to compute 
dielectric functions of metals to identify high performance can-
didates for plasmonic applications. Due to the large number 

of materials in such databases (e.g., ≈60 000 total materials in 
Materials Project as of performing this work) and higher com-
putational cost due to the requirement of much finer Brillouin 
zone sampling compared to calculating the electronic band 
structure, it is less feasible to compute optical spectra for every 
material in a database. Instead, we approach the problem of 
discovering new high-quality plasmonic metals by employing 
a machine-learning approach. Optical calculations are car-
ried out for a subset of ≈1000 materials to find quality factor 
values for plasmonic oscillations. Subsequently we use easily 
obtained, physically meaningful parameters as descriptors for 
each material.[33] The descriptors are selected based on physical 
relevance to the electronic properties of the material, including 
electrons above noble gas configuration of the constituent 
atoms, ionic radii, electronegativity of constituent atoms, and 
unit cell structure.

We employ machine-learning algorithms to find statistical 
models between the input descriptors and quality factors, and 
then employ these to rapidly predict quality factors as figures of 
merit for large databases. For a small number of materials, pre-
dicted to have high figures of merit using the machine-learned 
model, we then perform subsequent DFT simulations to con-
firm or reject the model predictions. In this work, our proce-
dure identifies three prototypes of plasmonic metals, AlCu3, 
ZnCu, and ZnGa3, and we also examine element-wise family 
substitutions. By making element-wise substitutions, the plas-
monic response is more finely tuned and can be optimized 
for specific applications on a case-by-case basis. This partially 
compensates for the limited accuracy of the predictions from 
machine learning and partially facilitates studying element-
wise substitutions that are close in descriptor space. Further-
more, to better understand relative contributions toward quality 
factors, we separately discuss the intraband and interband die-
lectric functions of Ag and AlCu3. We find that both the inter-
band and intraband contributions are necessary to capture the 
quality factor thoroughly. While it is known that interband con-
tributions need to be small for a good plasmonic material, we 
show from this data that they cannot be neglected when evalu-
ating quality factors and that it is not accurate to approximate 
the optical response of a metal using only the Drude model and 
plasma frequency.

2. Computational Approach

2.1. Optical Response

The response of a metal to an optical field is determined by the 
electronic inter- and intraband transitions captured by the die-
lectric tensor. Interband transitions consist of zero-momentum-
transfer excitations of an electron from a filled valence to an 
empty conduction state. This vertical excitation process corre-
sponds to absorption of light, acting as a loss mechanism for 
plasmonics. Intraband transitions result from light-induced 
oscillations of electrons near the Fermi energy.

The starting point for describing the intraband optical 
response of bulk plasmonic metals in both experiment[12,13,34,35] 
and computation[36–38] is the Drude model of free carriers 
under an applied optical field. The Drude model approximates 
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the charge carriers in a material as a classical free-electron gas. 
When plane wave light is shone on a metal–dielectric inter-
face, the electric field component parallel to the interface, Eext, 
excites electronic oscillations along the surface. Oscillations of 
such carriers at point r are described by the equation of motion 

extm err EE rr γ= − , where m is the effective mass, e the signed 
charge, and γ a material-specific damping parameter. The bulk 
flow of electrons gives rise to a surface current, nejj vv= , and 
through Ohm’s law, the medium has a Drude conductivity,

(1 )

2ne

m ı
σ τ

ωτ
=

−
 (3)

with DC conductivity DC
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σ τ=  and electron relaxation time 

τ. From the Drude conductivity, the dielectric function of the 
material due to intraband electronic transitions is
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where 
4
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m
ω π=  is the plasma frequency of the carriers. The 

relaxation time τ includes contributions from electron–elec-
tron scattering, electron–phonon scattering, and defects. It is 
possible to calculate the phonon[39] contribution to the elec-
tron relaxation time with DFT and the electron–electron[40] 
contribution with a Green’s function approach.[41] However, 
the experimentally measured electronic relaxation time addi-
tionally strongly depends on the grain size of the sample.[42–44] 
Explicitly simulating this process is too computationally expen-
sive to apply to a large number of materials and experimen-
tally dependent on specific samples. Instead, we follow Kumar 
et  al.[37] and Zhang et  al.[45] who address this issue by setting 
τ to a single physically reasonable value, 10 and 80 fs, respec-
tively. As the experimental relaxation times of Ag, Au, and Cu 
are on the order of 10 fs,[12] this value is selected as the relaxa-
tion time in this work and below we discuss the influence of 
this approximation.

The parameter ωp is calculated within the framework of DFT 
using[46,47]
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where Ω is the unit cell volume, e the electron charge, wk the 
normalized weight of the point k in the Brillouin zone, Enk is 
the energy of the nth band at k, and EF is the Fermi energy. 
Subscripts σ and ρ indicate the directions along which the 
applied electric field oscillates and the direction along which 
electrons oscillate in response, respectively. Our simulation 
output directly includes this plasma frequency matrix from 
intraband transitions and we use this to account for elec-
tronic excitations described by the Drude model. For cubic 
crystals, ,

2
pω σρ is diagonal with all three elements equal, but in 

general, ,
2
pω σρ can have off diagonal elements, for example, if 

the unit cell has non-mutually orthogonal lattice vectors. All  
24 materials explicitly named in this paper have diagonal 
plasma frequency matrices and 15 of these have all three diag-
onal components equal, including Ag, Au, AlCu3, Cu, ZnCu, 

and ZnGa3. Four of the nine remaining materials show differ-
ences in the components of ωp of less than 0.5 eV. Following 
the example of Kumar et  al.,[37] we take the average value of 
the diagonal elements as the plasma frequency. Of the mate-
rials named in this paper, the most severe breakdown of this 
approximation occurs for InAu3 with diagonal components of 
ωp of 8.72, 6.66, and 7.45 eV.

The contribution of interband transitions between valence 
and conduction bands to the dielectric function is described 
within DFT
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where q is the magnitude of the electron momentum change, 
wk is the symmetry k point weight, and uv,k is the periodic part 
of the Bloch wave function for band v at k.[48] Indices c, v run 
over the conduction and valence bands, respectively, and eβ are 
the Cartesian unit vectors.[48] The quantity

| |, , , ,

2

u uc v k c k v kff pp=  (7)

defines the oscillator strength of the optical transition for an 
electron excited from valence band v to conduction band c with 
constant momentum k with p the momentum operator.[49,50] 
The real part of the dielectric function is obtained by the 
Kramers–Kronig transformation

P d∫ε ω
π

ε ω ω
ω ω

ω= +
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In this work, we determine scalar dielectric functions by 
averaging the diagonal components of ε1,αβ(ω) and ε2,αβ(ω) sep-
arately. We compute the total dielectric function of the mate-
rial by summing that average with the Drude contribution, 
Equation (4).

2.2. Selection Criteria

Determining the suitability of a material for plasmonic applica-
tions may be performed by evaluating quality factors as a figure 
of merit which depends on both the material choice and the 
nanoscale geometry. Generically, the quality factor is evaluated 
based on the enhanced local optical field resulting from an 
applied optical field,

Q
E

E
=

Enhanced | |

Incident | |



  (9)

The analytic form of Q depends on the geometry of the 
metal–dielectric interface. While no analytic expressions are 
available for complicated cases such as π-shaped nanostruc-
tures,[51] nanospirals,[52,53] and ring resonators,[54,55] the quality 
factor of two major classes of plasmonic devices has been 
defined analytically. For SPP at an extended planar interface the 
quality factor is[34]
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For local surface plasmon resonances (LSPR) confined to the 
surfaces of metallic spheres the quality factor is[34,56]

Q ω ε
ε

= −( )LSPR
1

2

 (11)

The different equations  for the quality factors demonstrate 
that a single metal will not necessarily be the optimal material 
for all circumstances.

In this work, we use data available in the Materials Project 
database,[57,58] to identify materials with beneficial plasmonic 
quality factors. We restrict this search to polymorphs of mate-
rials that are energetically stable, by considering the energy 
above the convex hull as the energy difference between the 
lowest energy crystal structure for a compound and the struc-
ture of interest. Within Materials Project, typical values are 
smaller than 0.5 eV per atom and we use >0.1 eV per atom to 
indicate unstable structures.[57]

2.3. Descriptors and Machine Learning

In order to connect plasmonic quality factors and plasma fre-
quencies to materials by means of machine-learning models, 
we need to featurize materials using descriptors. Numerous 
approaches have been proposed and, usually, depend on the 
specific application. Several commonly used methods include: 
Coulomb matrices,[59] smooth overlap of atomic positions,[60] 
graphical representations,[61] and atomistic features.[33] We 
employ an approach similar to Ghiringhelli et  al.[33] in which 
material descriptors are constructed using only properties of 
the constituent atoms. The atomic properties included are: 
number of s-, p-, d-, and f-electrons above noble gas configura-
tion, atomic mass, electronegativity, ionic radii, atomic dipole 
moments, and atomic radii. Property values are taken from the 
Mendeleev python library.[62] While this allows descriptors to 
be constructed rapidly from minimal a priori information, this 
featurization approach suffers from being unable to distinguish 
different polymorphs. We include consideration of polymorphs 
through one-hot encoding of the crystal symmetry. We use 
DFT to calculate explicitly the dielectric functions and plasma 
frequencies for a training set of 970 randomly selected metals 
from Materials Project.

Fitting, validation, and testing errors were computed for six 
common machine-learning algorithms, as well as the inclu-
sion of boosting, available in scikit-learn.[63] Among the con-
sidered machine-learning algorithms, decision tree regressors 
with adaptive boosting were found to produce the lowest error 
models. This approach has the additional benefit of being 
readily optimized due to the small number of hyperparameters. 
Constructed models were validated using a two-stage scheme, 
where 10% of the training set was randomly designated the 
testing set. The testing set remained fixed throughout valida-
tion and model construction. The remaining training data was 
then divided randomly by 80% into a set for fitting a decision 
tree regressor and 10% into a validation set. The fit model then 

was applied to both the validation and testing sets. The pro-
cess was repeated for 100 random fitting–validation partitions 
and values for the testing set are determined by averaging over 
these. Results are discussed below. Model errors were found to 
be unchanged with increasing the training set size from 920 
materials to 970 materials.

2.4. Density Functional Theory

We compute the quality factor training sets using the Vienna 
Ab Initio Simulation Package (VASP) version 5.3.3.[46,47] 
The exchange-correlation functional used is the general-
ized gradient approximation (GGA) of Perdew, Burke, and 
Ernzerhof.[64] Materials along with their relaxed crystal struc-
ture are chosen from Materials Project with the pymatgen 
open source library.[57,58] For efficiency of these simulations, 
the training set materials are limited to a maximum of 
35 atoms in the unit cell. Optical calculations[48] are carried 
out using a plane-wave cutoff of 550 eV and a 31  ×  31  ×  31 
Γ-centered k-point grid. This high k-point density is found 
to be sufficient to obtain a plasma frequency of Au which is 
stable within a ±0.1 eV range.

Quality factors are evaluated from the dielectric functions, 
including intra- and interband contributions, at energies of 
1.1655, 1.9590, and 2.8075 eV. These energies represent oper-
ating energies of lasers commonly used for plasmonic appli-
cations: Nd:YAG (λ = 1064 nm),[65,66] HeNe (λ = 633 nm),[67,68] 
and HeCd metal vapor (λ  = 442 nm).[69,70] Relevant input and 
output files, as well as a datafile with the post-processed DFT 
results for generating the figures in this paper can be found in 
the Materials Data Facility.[71–73]

3. Results and Discussion

3.1. Plasma Frequency

As discussed above, in order for a metal–vacuum interface to 
allow an oscillating mode, the operating frequency ωo must be 
below the plasma frequency of the metal ωp.[1,2] Hence, candi-
date materials for plasmonics can be downselected in an ini-
tial filtering step by requiring the plasma frequency to be much 
greater than the operating frequency of a given application. For 
such considerations and as validation of the concept, we first 
construct and validate a machine-learned model for plasma fre-
quencies of metals.

First, we minimize the decision tree regressor model training 
errors by optimizing the maximum tree depth hyperparameter. 
Maximum decision tree depths are varied between four and 
ten layers and Figure 1 shows the corresponding fitting, valida-
tion, and testing mean absolute errors (MAEs). The distribution 
of DFT

pω  values used in training is shown in Figure 2. The fit-
ting MAE decreases monotonically with increasing tree depth, 
which we attribute to the increasing number of fitting para-
meters. The testing set MAE shows a minimum at a maximum 
tree depth of 6. For maximum tree depths below 6, there are 
no sufficient number of fitting parameters to capture the rela-
tion between the descriptors and ωp. However, allowing tree 
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depths greater than 6 leads to more severe overfitting, which 
manifests itself in the decreasing fitting set MAE, while the 
testing MAE increases.

A decision tree regressor with adaptive boosting is trained 
on DFT-calculated plasma frequencies and comparison of the 
machine-learned and DFT-calculated plasma frequencies for the 
metal training set is shown in Figure 3. The model produces 
MAEs of 0.78 eV for the fitting set, 1.2 eV for the validation 
set, and 1.0 eV for the testing set. This indicates that with the 
optimum choice of the maximum tree depth hyperparameter, 
overfitting is still present: The validation and testing MAEs are 
approximately factors of 1.5 and 1.3 larger than the fitting MAE, 
respectively. However, while the validation and testing MAEs 
are larger than the fitting MAE, they are still close enough to 
produce a usable model.

The decision tree regressor model produces non-
Gaussian distributions of fitting and validation errors in ML

pω ,  
see Figure  3b. This plot shows the differences between 

machine-learning-predicted ML
pω  and DFT-calculated DFT

pω  
for fitting and validation sets over all 100 fitting–validation 
iterations. The fitting set shows a mean error of 0.03 eV with 
1-standard deviation width of 0.9 eV. The validation set has a 

Adv. Optical Mater. 2022, 10, 2200158

Figure 1. Hyperparameter optimization of the decision tree regressor 
for obtaining the best plasma frequency model. Based on fitting, valida-
tion, and testing errors, we restrict the maximum tree depth to six. This 
depth corresponds to a local minimum in the validation mean absolute 
error (MAE) and the global minimum of the testing MAE. As the max-
imum depth is increased beyond six layers, the fitting MAE continues to 
decrease while the testing MAE becomes larger.

Figure 2. Distribution of DFT
pω  for the 970 materials in the training set.

Figure 3. a) Comparison of ML
pω , predicted via the decision tree 

regressor, and DFT
pω  calculated with DFT. Plotted are the results of one 

fitting–validation iteration as well as testing set average values and error 
bars for all 100 iterations. Red line is a guide to the eye. b) Distribution 
of machine-learning errors of ωp for 100 fitting–validation iterations. The 
distributions are unimodal and nearly symmetric about their respective 
means. c) Distribution of machine-learning fractional errors of ωp for 100 
fitting–validation iterations. Both distributions are unimodal and nega-
tive skewed.
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mean error of 0.06 eV with 1-standard deviation width of 1.7 eV. 
Errors between the DFT-computed and the machine-learning-
predicted plasma frequencies show unimodal distributions 
with skewnesses of 0.06 for fitting and −0.15 for validation. We 
observe a small bias toward underestimating DFT

pω , with the 
constructed model predicting smaller values for 51% of both 
fitting and validation materials. The unimodal distribution of 
errors indicates that there is no subgroup of metals for which 
the model consistently fails.

Further, the Spearman correlation coefficients between the 
DFT-calculated plasma frequencies and the model-predicted 
frequencies are calculated as 0.90 for the fitting set and 0.70 for 
the validation set. Spearman coefficient values near 1.0 indicate 
that the model will typically correctly order materials by plasma 
frequency even in instances where the individual values do not 
match the DFT values.[74] The non-Gaussian characters of the 
error distributions are apparent through the kurtoses of −0.75 
for fitting and 1.7 for validation, neither matching the Gaussian 
kurtosis of 0. Fitting errors are almost entirely confined to 
between −2 and 2 eV, with a negative kurtosis value indicating 
smaller than Gaussian tails. The validation error distribution 
is not as tightly confined as the fitting error distribution; there 
are more large error samples than would be expected for a 
Gaussian distribution.

By considering the fractional error distributions in Figure 3c 
bias and non-Gaussianity in the constructed model is further 
shown. The fitting set shows a mean fractional error of −9% 
and the validation set has a mean fractional error of −15  %. 
While the absolute errors show nearly symmetrical distribu-
tions, the fractional errors are skewed, with skewnesses of −2.8 
for fitting and −3.9 for validation. The skewness manifests as 
a tail in the fractional error distribution seen for DFT ML

p pω ω< .  
The fractional error distribution kurtoses are 14 for the fit-
ting and 23 for the validation set, characteristic of larger than  
Gaussian tails.

However, the fractional errors are not consistent over the 
range of metals. While Gaussian distributed fractional errors 
would require that small plasma frequency materials also have 
small errors and large plasma frequency materials have large 
errors, we obtained an error being constant across the range 
of plasma frequencies and the model has a tendency to over-
estimate DFT

pω  of low DFT
pω  metals. This causes small plasma 

frequency materials to tend to have larger fractional errors 
while high plasma frequency materials have lower fractional 
errors. The typical size of overestimation in the low ωp metals 
is consistent with the error seen at large ωp materials, but this 
translates to large fractional errors in the low ωp materials. 
However, since for plasmonic applications large ωp is desir-
able, this error in the low ωp regime is not detrimental to the 
current study.

In summary, the constructed model is able to predict plasma 
frequencies of a wide range of metals with approximately 
Gaussian distributed errors. While the accuracy of the model is 
limited by the 1.0 eV MAE, which is larger than typical experi-
mental uncertainty of ≈0.5 eV, its utility arises from the ability 
to screen rapidly large databases without needing to perform 
DFT calculations for all metals and using the results to downse-
lect for materials with plasma frequencies near a desired value 
that fulfill the criterion ωp ≫ ωo.

3.2. Quality Factor Models

In this work we consider two simple material configurations 
for plasmonics, a planar vacuum–metal interface and metallic 
nanospheres in vacuum. Separate machine-learning models 
QLSPR

ML  and QSPP
ML  are fit for the corresponding quality factors to 

the DFT-calculated values QLSPR
DFT  and QSPP

DFT at each considered 
energy. As representative examples, Figures 4a and 5a plot the 
results for one fitting–validation iteration of model construction 
for (1.165 eV)LSPR

MLQ  and (1.165 eV)SPP
MLQ , including the values of 

one standard deviation error bars for the testing set from all 100 
fitting-validation iterations. Both models show clustering of fit-
ting, validation, and testing around the ideal fit of QML = QDFT. 
However, the models do make a limited number of outlier 
errors in the testing set for which the DFT-calculated quality 
factor is not within the one standard deviation error bars. The 
best agreement between the machine-learning-predicted QML 
values for the testing set and the DFT-calculated values occur 
for smaller QDFT, where there is more training data. At larger 
values of DFT-calculated quality factors, the machine-learning 
models tend to underestimate the values.

Adv. Optical Mater. 2022, 10, 2200158

Figure 4. a) Comparison of LSPR
MLQ  predicted via machine-learned 

regressor versus 
LSPR
DFTQ  from DFT. Plotted are the results of one fitting–

validation iteration and average values and error bars for all 100 iterations 
for testing. Red line is a guide to the eye. b) Distribution of differences 
of DFT-calculated and machine-learning-predicted QLSPR at 1.165 eV for 
fitting and validation sets.
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Table 1 lists the average absolute values of the six examined 
quality factors and the fitting, validation, and testing MAEs. 
In all cases, the MAEs are less than the average absolute value 
of the quality factor, however, the MAEs are within a factor of 
three. In addition, the absolute errors between the machine-
learned model and DFT-computed quality factors show distri-
butions with larger-than-Gaussian tails. This indicates a ten-
dency of the decision tree regressor model constructed here 

to produce predictions with errors comparable to typical QDFT 
values, limiting its ability to accurately predict quality factors.

Corresponding plots of the model error distributions 
are presented in Figures  4b and 5b for (1.165 eV)LSPR

MLQ  and 
(1.165 eV)SPP

MLQ . The fitting error distribution in Figure  4b for 
the (1.165 eV)LSPR

MLQ  model is unskewed with an average error 
of −0.03, an MAE of 0.54, and a kurtosis of 2.76. Model errors 
of the fitting set are less tightly clustered about the mean error, 
with larger-than-Gaussian tails, as indicated by the kurtosis 
values greater than 0. The validation error distribution for the 

(1.165 eV)LSPR
MLQ  model is slightly skewed negatively with an 

average error of 0.08, MAE of 1.00, and a kurtosis of 15. The 
skewness in the validation set is sufficiently small and is not 
visually apparent in Figure 4b. Despite these limitations of the 
model, there is still a strong correlation between the predicted 
and DFT quality factors, with a Spearman coefficient of 0.75 
between the predicted and calculated values for the fitting set 
and 0.56 for the validation set. This justifies using our model 
for downselection.

The error distributions for (1.165 eV)SPP
MLQ  in Figure  5b are 

non-Gaussian with larger-than-Gaussian tails and a two-peak 
distribution of the fitting error. The fitting error is positive 
skewed with an average error of −5.7, MAE of 19.7, and a kur-
tosis of 20. The positive skewness is shown as the average of 
Q Q−SPP

DFT
SPP
ML  at −5.7 is larger than the position of the peak in 

the distribution in the bin centered at Q Q− = −11.25SPP
DFT

SPP
ML . 

The large kurtosis is attributed to the second peak present in 
the bin centered at Q Q− = 1.25SPP

DFT
SPP
ML  and the tails of the dis-

tribution. Nevertheless, the SPP models also reproduce the 
general trend in quality factors with Spearman coefficients 
between machine-learning and DFT values of 0.62 for fitting 
and 0.50 for validation. The broad error spread and bimodal 
distribution of errors indicate difficulty of the model in repro-
ducing the computed relation between the chosen descriptors  
and QSPP

DFT.
For this work, we did not find it necessary to spend exces-

sive resources developing highly accurate machine-learning 
models of the plasmonic quality factors. Instead we use a less 
accurate model which reproduces general trends as a coarse 
filter and then explicitly check the predictions by performing 
DFT simulations of dielectric functions. However, we note 
that several approaches exist for improving machine-learning 
model accuracy, for example, by using improved descriptors 
which are more closely related to the target property.[75] This 
includes Mordered[76] or rdkit[77] descriptor sets that were found 
to be useful as these are often closely related to physical proper-
ties of interest. Including descriptors based on electronic band 
structure or atomic orbitals may lead to lower error machine-
learning models for predicting dielectric-based quality factors. 
Alternatively, the chosen algorithm of decision tree regres-
sors with adaptive boosting may struggle to find a relation-
ship between the descriptors and the target quantities. Deep 
learning algorithms, including neural networks, have shown 
remarkable success predicting physical properties and com-
plex chemical processes.[78–81] The success of neural networks 
arises from the ability to learn nonlinear relations between 
the descriptors and quantity of interest, but comes at the cost 
of requiring larger training sets than conventional machine-
learning algorithms.[82,83]

Adv. Optical Mater. 2022, 10, 2200158

Figure 5. a) Comparison of SPP
MLQ -predicted via machine-learned regressor 

versus SPP
DFTQ  calculated with DFT. Plotted are the results of one fitting–

validation iteration and average values and error bars for all 100 iterations 
for testing. Red line is a guide to the eye. b) Distribution of differences 
of DFT-calculated versus machine-learning-predicted QSPP at 1.165 eV for 
fitting and validation sets.

Table 1. MAEs of machine-learned quality factors from initial training 
set.

Q Factor 〈|QDFT|〉 Fitting Validation Testing

LSPR
MLQ  (1.165 eV) 1.33 0.54 1.00 1.11

LSPR
MLQ  (1.959 eV) 1.07 0.49 0.82 0.86

LSPR
MLQ  (2.807 eV) 0.93 0.43 0.74 0.63

SPP
MLQ  (1.165 eV) 46.5 19.7 38.8 33.8

SPP
MLQ  (1.959 eV) 15.6 6.56 13.7 17.0

SPP
MLQ  (2.807 eV) 9.69 3.66 7.46 5.52
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3.3. Predicting New Plasmonic Materials

Due to the prediction errors discussed for the constructed 
machine-learning models for quality factors in Section 3.2, we 
use them only to downselect for possible high-quality factor 
materials from the Materials Project database which had not 
already been included in the training set. In determining the 
materials space to search, we begin with the full set of metals 
available in the Materials Project database. All metals which 
have been included in the training set are removed because 
quality factors have already been calculated for these materials 
using DFT. Two further criteria are imposed to account for ease 
of fabrication of any potential candidate: the energy above the 
convex hull must be less than 0.10 eV and the unit cell must 
contain no more than 20 atoms. This results in a search space 
of 7445 possible metals and descriptors are calculated for each. 
The set of metals with their descriptors are fed into the con-
structed machine-learning models. Predicted values of the 
plasma frequency and quality factors are determined from 
the models by averaging over 100 fitting–validation iterations. 
At this stage, we filter out any metals containing Hg, Pb, Cd, 
or f-block elements. These materials are only removed late in 
the process in case they contain the only potential high quality 
factor materials. Combining the machine-learning filtering 
and fabrication criteria, the 233 potential highest-quality factor 
metals have been selected for explicit calculation of quality fac-
tors using DFT. A flowchart for the selection process is pro-
vided in Figure 6.

For these 233 non-radioactive materials, none of which con-
tained Hg, Pb, Cd, or f-block elements, we performed DFT 
simulations and selected three with a simple crystal structure 
that displayed the largest in one of the six considered quality 
factors: AlCu3, ZnCu, and ZnGa3. AlCu3 is in the Fm3m space 
group with cubic symmetry. ZnCu and ZnGa3 are in the Pm3m 
space group with cubic symmetry. In the list of 233 materials, 
we note a lack of metal nitrides, which are subjects of study 
for plasmonics, for example, by Habib et al.[84] Their absence is 
discussed in Section F, Supporting Information.

In Figure  7 we compare the distribution of predicted and 
DFT-calculated plasma frequencies for these three metals. The 
plasma frequency of AlCu3 is computed as 9.00 eV and pre-
dicted by the machine-learned model as 8.03 ± 0.38 eV. For 
ZnCu, the computed plasma frequency is 9.59 eV, outside the 
machine-learning 1-σ prediction of 8.57 ± 0.26 eV. Also just out-
side the 1-σ prediction of 9.64 ± 0.96 eV, the computed plasma 
frequency of ZnGa3 is 10.64 eV.

The constructed plasma frequency model shows a tendency 
to underestimate DFT

pω  for large plasma frequency metals in the 
testing set. To explain this, the plot in Figure 2 shows the dis-
tribution of plasma frequencies for all materials in the training 
set used to train our model. Of the 970 included materials, 25 
materials have a plasma frequency between 9.0 and 10.0 eV and 
a further 25 have a plasma frequency above 10.0 eV. Due to the 
smaller number of training points at large plasma frequencies, 
our model would be expected to underestimate in this regime, 
since it was mostly trained on intermediate plasma frequency 
values. Similarly, we expect that the model would overestimate 
values at the low end of the range used for training, due to the 
limited number of training points. If required, the model could 

be improved using sequential learning, where potential high or 
low plasma frequency materials would be identified using the 
machine-learning model, the corresponding plasma frequen-
cies explicitly calculated in DFT, and then added to the training 
set in a subsequent model building iteration.

QLSPR
DFT  and QSPP

DFT for the three selected materials are compared 
to the commonly used plasmonic noble metals Ag, Au, and 
Cu in Figure 8. The highest-quality factor material depends on 
both the energy and the chosen quality factor. No single mate-
rial has the highest-quality factor at all energies for both QLSPR

DFT  
and QSPP

DFT. At 1.165 eV Ag and Au have LSPR
DFTQ  values of 15.8 and 

13.4, respectively. The QLSPR
DFT  for Au is exceeded by ZnCu (14.2) 

and closely matched with AlCu3 (13.2). Ag outperforms both 
other currently used materials and the predicted new mate-
rials at 1.165 and 1.959 eV. With QLSPR

DFT  of 1.58 at 1.165 eV, ZnGa3 
underperforms all other materials. At increased energies, how-
ever, Au and Cu suffer decrease in QLSPR

DFT  and ZnGa3 becomes 

Adv. Optical Mater. 2022, 10, 2200158

Figure 6. Flowchart for constructing machine-learning models and 
selecting high QDFT metals. In gray is a possible addition to the process 
for iterative learning to improve the model accuracy for high-quality factor 
metals. The bottom-most green boxes are the results of the machine-
learning process which are reported in this work. DFT simulations have 
been carried out to verify model predictions represented by the green 
boxes.
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the highest-quality factor material for both LSPRs and SPPs 
above 2.8 eV. The sharp decreases in quality factors for Au and 
Ag correspond to the turning on of interband absorption in this 
energy range, since Au and Ag both possess direct optical gaps 
of ≈2.0 eV (Au) and ≈2.4 eV (Ag).

While no single material outperforms the current standard 
plasmonic metals over the full optical energy range, AlCu3, 
ZnCu, and ZnGa3 all outperform Au and Cu for at least one 
of the six considered quality factor-energy combinations. In 
particular, AlCu3 and ZnCu are promising choices for near-IR, 
with comparable QLSPR

DFT  values to the commonly used Au. ZnGa3 

has potential to fill the role of a UV plasmonic material. These 
trends also apply to QSPP

DFT.
In order to provide a deeper understanding of these results, 

we analyze electronic band structures and projected densities 
of states of Ag, AlCu3, ZnCu, and ZnGa3 in Figure 9a–d, and 
oscillator strengths of the optical transitions for each mate-
rial in Figure 10. The Ag band structure in Figure 9a shows a 
finite density of states near the Fermi level that is required for 
plasmon oscillations. It also shows an absence of low energy 
vertical optical transitions below 2.43 eV, see Figure  10a, ren-
dering Ag the material with the largest minimum interband 
optical transition energy of the materials investigated in this 
paper. This leads to Ag being the metal with highest-quality fac-
tors at energies of 1.165 and 1.959 eV.

The band structures and allowed transitions of AlCu3 and 
ZnCu show qualitatively similar behavior to Ag. Both mate-
rials show a lack of allowed optical interband transitions up to 
2 eV, preventing optical absorption loss. Conversely, in ZnGa3 
low energy optical transitions with large oscillator strengths are 
allowed, corresponding to strong absorption and low quality 
factors at low energy. At higher energies, the transition oscil-
lator strengths decrease, leading to ZnGa3 weakly absorbing 
in the UV spectrum. Steeply sloped bands near the Fermi 
level lead to a large plasma frequency of ZnGa3 according to 
Equation (5), allowing plasmon oscillations at high energies.

Adv. Optical Mater. 2022, 10, 2200158

Figure 7. Distributions of machine-learning-predicted ωp for a) AlCu3, 
b) ZnCu, and c) ZnGa3 computed from averaging 100 fitting–validation 
iterations.

Figure 8. a) LSPR
DFTQ  is plotted for reference materials Ag, Au, and Al, and 

computed for the new materials AlCu3, ZnCu, and ZnGa3. b) SPP
DFTQ  is 

plotted for reference materials Ag, Au, and Al, and computed for the new 
materials AlCu3, ZnCu, and ZnGa3. Vertical dashed lines correspond to 
energies of 1.165, 1.959, and 2.807 eV.
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All DFT calculations in the main text of this work are per-
formed with the PBE exchange-correlation functional within 
the GGA.[87] In metals, using the PBE functional can lead to the 
d-bands being placed at the incorrect energies.[88] We attempt to 
correct for the placement by evaluating the quality factors using 
the HSE06 hybrid exchange-correlation functional.[89,90] The 
results are reported for AlCu3 and ZnGa3 in Section  E, Sup-
porting Information. Using hybrid functionals increases the 
computational cost by factors of 100 to 1,000. High-throughput 
use of hybrid functionals in DFT is prevented by the increased 
computational cost compared to GGA functionals.

Adv. Optical Mater. 2022, 10, 2200158

Figure 9. Electronic band structure and projected density of states per 
unit cell volume of a) Ag, b) AlCu3, c) ZnCu, and d) ZnGa3. High sym-
metry k-points were selected using SeeK-path.[85,86]

Figure 10. Direction-averaged k-resolved relative oscillator strengths and 
energy of the vertical optical transition from valence state v to conduction 
state c for a) Ag, b) AlCu3, c) ZnCu, and d) ZnGa3. This figure shows rela-
tive oscillator strengths, by scaling the individual value from Equation (7) 
linearly such that the single strongest transition of all four material has 
a relative oscillator strength of 1. Horizontal dashed lines correspond to 
energies of 1.165, 1.959, and 2.807 eV.
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In selecting materials for plasmonics, we have considered 
only the quality factors. For practical implementation, more 
issues must be considered. We carry out several further tests 
of material viability for AlCu3, ZnCu, and ZnGa3, and compare 
against well known plasmonic metals, with results described 
in the Supporting Information. Device conditions will require 
stability with respect to oxidation. In Section  C, Supporting 
Information, we report on the work function and change in 
enthalpy due to oxidation for each proposed metal, to serve as 
an initial indication of each metal’s tendency to oxidize. AlCu3 
is predicted to have a rate of oxidation comparable to Al. ZnGa3 
is found to be more prone to oxidation than Al. ZnCu is more 
prone to oxidation than Al, but further work is required to com-
pare with Al. Further, the DFT calculations of the quality factors 
assume pure materials with perfect crystals. For metals, there 
may be disorder, existence of competing alloys, and stoichiom-
etry errors. Each effect will influence a metal’s optical response 
and the ability to control the structure and composition must 
be considered. Should there be experimental interest in any of 
these materials, more follow-up work in this direction could be 
planned for specific materials. However, such an in-depth study 
is not feasible in a high-throughout context. Computed extinc-
tion, absorption, and reflection spectra for planar vacuum–
metal interfaces are shown and discussed in Section  G, 
Supporting Information.

3.4. Element Substitutions

The machine-learning approach developed here has shown suc-
cess in identifying high-quality factor plasmonic metals and is 
useful for rapidly scanning very large chemical spaces. How-
ever, it is not guaranteed to identify the highest-quality factor 
material. Using the model results as a step in narrowing down 
the search space, we make element-wise substitutions in the 
proposed AlCu3, ZnCu, and ZnGa3. The element-wise sub-
stitutions consist of substituting atoms of one element with 
atoms of another element in the same group. By restricting 
substitutions to the same group, we expect similar bonding and 
crystal structure due to the number of valence electrons being 
unchanged. We make the approximation that the crystal sym-
metry groups are unchanged by the substitutions, to isolate the 
effect of changing the chemical composition from effects due 
to a change in crystal structure and we expect to find similar 
band structures and optical transitions. Lattice constants and 
all atomic positions within the unit cells are then relaxed. The 
materials considered are further limited to those that are avail-
able in the Materials Project database.

For AlCu3 the considered materials are AlAg3, AlAu3, GaCu3, 
GaAg3, InCu3, InAg3, and InAu3. Their quality factors are 
compared in Figure 11 and we find that AlCu3 outperforms all 
materials in its family up to 2.3 eV for QLSPR

DFT  and up to 1.9 eV for 
QSPP

DFT. At 2.807 eV, all materials in this group display larger LSPR
DFTQ  

and QSPP
DFT values than Au. AlCu3 displays the largest plasma fre-

quency of 9.00 eV of the substitutions. The plasma frequencies 
of the remaining materials range from 7.00 eV for GaAg3 up to 
8.51 eV for GaCu3. The examined substitutions for ZnCu are 
ZnAg, ZnAu, CdAg, CdAu, and HgAg, and their quality fac-
tors are compared in Figure 12. Among these, ZnAg and CdAg 

show the most similar behavior of QLSPR
DFT  and QSPP

DFT compared 
to ZnCu, with a single smooth maximum between 1.0 and  
1.4 eV. Finally, the considered substitution materials for ZnGa3 
are ZnAl3, ZnIn3, CdAl3, CdIn3, HgGa3, and HgIn3. Their 
quality factors are compared in Figure 13 and they show a more 
intricate dependence on energy, with ZnAl3 and CdAl3 outper-
forming ZnGa3. ZnAl3, and CdAl3 are found to have plasma 
frequencies of 11.67 and 11.08 eV, respectively, both larger than 
that of ZnGa3 of 10.64 eV.

In particular for ZnAl3 and CdAl3, the quality factors show 
strong oscillations with frequency (see Figure  13a,b). These 
oscillations cause the choice of best plasmonic material among 
the considered group to be strongly dependent on the oper-
ating energy. To analyze this more, Figure 14a plots the real and 
imaginary components of the dielectric functions for ZnGa3, 
ZnAl3, and CdAl3 including both the interband and intra-
band contributions. Figure  14b includes only contributions to 
the dielectric function from interband transitions. This shows 
that oscillations in real and imaginary part of the frequency-
dependent dielectric function of ZnAl3 and CdAl3 lead to the 
oscillations seen in the quality factors.

In summary, element substitutions provide an effective 
method to extend the search for high-quality factor metals. In 
the ZnCu family, CdAu and HgAg were found to have higher 
QLSPR

DFT  and QSPP
DFT than ZnCu at 2.8075 eV. In this case though, the 

two higher-quality factor materials contain toxic Cd and Hg. In 
the ZnGa3 family, the metals ZnAl3 and CdAl3 are computed 
to have higher QLSPR

DFT  and QSPP
DFT than ZnGa3 at 1.065, 1.959, and 

Adv. Optical Mater. 2022, 10, 2200158

Figure 11. Comparison of a) LSPR
DFTQ  and b) SPP

DFTQ  for family-substituted 
AlCu3 materials.
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2.807 eV. In addition, for ZnAl3 and CdAl3 we observe energy-
dependent oscillations in the quality factors. The oscillations 
cause the choice of material to become dependent on the 
energy of the application.

3.5. Decomposing Quality Factors

In the following, we individually analyze interband and intra-
band contributions to show that both contribute to differences 
in the quality factor. We note that both contributions combine 
nonlinearly in the quality factor through the dielectric functions

Q
ε ε
ε ε

= − +
+LSPR

1,inter 1,intra

2,inter 2,intra

 (12)

In Figure  15 we show the interband (a) and intraband (b) 
contributions to the quality factor for Ag and the newly pro-
posed AlCu3. The behavior for the two metals varies strongly at 
low energies, corresponding to different sets of allowed optical 
interband transitions, see Figure  15a. The origin of this dif-
ference is displayed most prominently in Figure  10a,b. At low 
energies, AlCu3 allows a small number of optical interband 
transitions, while Ag has an interband gap. In the UV range, 
both Ag and AlCu3 show an increasing number of interband 
transitions with relative oscillator strengths >10−3, causing the 
quality factor for both materials to fall toward 0 in the UV. As a 

result, Ag and AlCu3 perform better as plasmonic materials in 
the IR and visible energy ranges than in the UV range.

The intraband contribution depends on material only 
through the value of the electron relaxation time τ and the 
plasma frequency DFT

pω . Ag and AlCu3 are computed to have 
similar plasma frequencies, 8.96 and 9.00 eV, respectively, 
hence, appreciable differences in intraband contributions 
must be a result of differences in τ. In metals typical values 
of τ can vary over an order of magnitude, with computation 
of τ for large numbers of materials being prohibitively expen-
sive. Johnson and Christy[12] report electron relaxation times 
for noble metals ranging from 6.9 to 31 fs. In Figure  16 and 
Figure  S3, Supporting Information, we show how the quality 
factors of Ag depend on τ at three different representative ener-
gies. As expected, the dependence is strong in the low energy 
range, that lies within the optical gap of Ag, as there are no 
interband contributions. At higher energies, this depend-
ence on τ disappears, which corresponds to the Drude model 
becoming transparent in the UV region of the optical spectrum, 
while interband transitions become the dominant contribution 
to the dielectric function.

When computing quality factors for the entire dataset of 
metals in this work, we used a single value of τ = 10 fs to rep-
resent electron relaxation time. Increasing τ, corresponding to 
weaker scattering of oscillating electrons, causes the quality 
factor to increase with τ and the energy of the maximum to red-
shift, as shown for Ag and AlCu3 in Figure 15c. In AlCu3, the 
maximum quality factor is shifted from 1.286 eV at τ = 6.9 fs  

Adv. Optical Mater. 2022, 10, 2200158

Figure 12. Comparison of a) LSPR
DFTQ  and b) SPP

DFTQ  for family-substituted 
ZnCu materials.

Figure 13. Comparison of a) LSPR
DFTQ  and b) SPP

DFTQ  for family-substituted 
ZnGa3 materials.
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to 1.112 eV at τ  = 31 fs. The shift of the maximum is more 
pronounced in Ag, from 1.778 eV at τ = 6.9 fs to 1.542 eV at 
τ = 31 fs. The magnitude of the red-shift is material dependent, 
based on the interband contributions. The increase in the 
total quality factor is due only to the increase in the intraband 
contribution as the electron relaxation time does not influ-
ence the interband optical transitions. Definitively choosing 
between materials would require measuring or computing 
τ. In Section  D, Supporting Information, we describe the 
method for calculating the phonon contribution to τ, plot the 
temperature-dependent τel−ph, and discuss the consequences. 
We find that AlCu3, ZnCu, and ZnGa3 all have significantly 
shorter relaxation times than Ag over the temperature range 
of 200 to 1000 K. This causes the QLSPR and QSPP values of 
AlCu3 and ZnCu at 1.1655 and 1.9590 eV no longer to be com-
petitive with Ag. However, ZnGa3 remains a viable choice for 
a UV plasmonic metal.

The influence of τ on the position of the quality factor 
maximum is examined more definitively in Figure 16. In Ag, 
varying τ between 1 and 100 fs smoothly shifts the position 
of the maximum from 1.88 to 1.30 eV. In AlCu3, varying τ 
over the same range shifts the maximum between 1.41 and 
0.85 eV. AlCu3 has a discontinuous jump in the position 
between τ = 59 and 60 fs (see detailed discussion in the Sup-
porting Information). This provides a method of manipu-
lating the quality factor in addition to choice of material. τ 
can be altered by controlling the defect density and grain 

size. A material’s performance as a plasmonic can then be 
improved through shifting the peak in quality factor to match 
the operating energy.

4. Conclusions

We trained machine-learning models on quality factors derived 
from dielectric functions that we computed within DFT, to 
expedite the discovery of new plasmonic materials. Training 
and testing results for these machine-learning models were dis-
cussed and we concluded that they are limited by errors that are 
of the same order of magnitude as typical quality factors. How-
ever, the models still act as a layer of filtering for downselecting 

Figure 14. a) Real and imaginary parts of the dielectric functions (inter-
band and intraband contributions included) of ZnGa3, ZnAl3, and CdAl3. 
b) Real and imaginary parts of the dielectric functions of ZnGa3, ZnAl3, 
and CdAl3, including only the interband contributions.

Figure 15. Quality factor calculated including only the dielectric function 
due to a) interband transitions, b) intraband transitions, and c) both 
interband and intraband contributions. The dielectric functions are evalu-
ated with three experimental relaxation times from Johnson.[12]
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potential high-quality factor materials out of a large pool of 
candidates on Materials Project. Three particularly promising 
materials were manually selected for further analysis, AlCu3, 
ZnCu, and ZnGa3. We find that allowed optical interband tran-
sitions, plasma frequency, and electronic relaxation time all 
have non-negligible influence on the quality factor across the 
IR and optical energy ranges.

Of the materials identified by machine learning, AlCu3 
and ZnCu show similar optical behavior to noble metals that 
are widely used for plasmonics, with a lack of low energy 
direct interband transitions. In contrast, ZnGa3 has strong 
optical transitions in the IR and visible spectral range but 
weaker absorption in the UV, rendering it a potential UV 
plasmonic metal. By performing element-wise family sub-
stitutions on ZnGa3, two more potential UV plasmonic 
metals have been identified, ZnAl3 and CdAl3. Since in the 
UV range interband transitions dominate, these results are 
not affected by the relaxation time. Finally, the machine-
learning models demonstrate mixed success in identifying 
new materials with high plasmonic quality factors at optical 
energies. Assuming electron relaxation times of 10 fs for all 
metals, ZnCu outperforms Au at excitation energies of 1.165 
and 1.959 eV while AlCu3 outperforms Au at 1.959 eV. How-
ever, Ag shows higher-quality factors than all other consid-
ered materials at excitation energies of 1.165 and 1.959 eV for 
electron relaxation times of both 10 and 31 fs. Nevertheless, 
despite having similar quality factors AlCu3 and ZnCu may 
still be of interest as they are composed of lower cost metals 
than Au and Ag.

The metals Ag, Au, and Cu function well as plasmonics in 
the IR and visible energy ranges because they have optical band 
gaps near 2 eV. For optical excitations between 0 eV and their 
respective optical gaps, these materials have no interband tran-
sitions and the response is described well by the Drude model. 
This same property is seen in AlCu3 and ZnCu. However, 
optical interband transitions in Ag, Au, Cu, AlCu3, and ZnCu 
lead to losses in the UV energy range. Consequently, these 
materials are not suitable as UV plasmonics. Our approach has 
identified ZnGa3 as a potential UV plasmonic material. ZnGa3 

shows strong optical transitions at low energies, with weaker 
optical transitions in the UV energy range.

The framework used here is general and can be extended 
toward any property calculable from the optical dielectric 
function for both metals and semiconductors in the future. 
The applicability is most limited by approximating the relaxa-
tion time as independent of material choice. While there is 
limited experimental literature measuring the relaxation time 
of metals, computing this quantity is expensive and the value 
is dependent on the quality of real material samples. Hence, 
explicit first-principles simulations of the electronic relaxa-
tion time were not performed here, but we note that control-
ling sample defects allows a limited amount of control over the 
energy position of the peak plasmonic quality factor through 
the relaxation time for a fixed choice of material. Increasing τ 
by removing sample defects may provide a method to red-shift 
the peak in quality factor while decreasing τ by introducing 
defects blue-shifts the peak, allowing one to better match the 
operating energy.
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Figure 16. Energy of the LSPR quality factor maximum for Ag and AlCu3 
with varying electron relaxation time τ. The black dashed vertical line 
marks the τ = 10 fs used throughout the previous sections of this paper.
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