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Heterojunctions are at the heart of many modern semiconductor devices with tremendous 

societal impact: Light-emitting diodes shape the future of energy-efficient lighting, solar cells 

are promising for renewable energy, and photoelectrochemistry seeks to optimize efficiency 

of the water-splitting reaction. Design of heterojunctions is difficult due to the limited number 
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of materials for which band alignment is known and the experimental as well as 

computational difficulties associated with obtaining this data. We show that band alignment 

based on branch-point energies is a good and efficient approximation that can be obtained 

using data from existing electronic-structure databases. Errors associated with this approach 

are comparable to those of expensive first-principles computational techniques as well as 

experiment. Branch-point energy alignment is then incorporated into a framework capable of 

rapidly screening existing online databases to design semiconductor heterojunctions. The 

method is showcased for five different prototype cases: transport layers are successfully 

predicted for CdSe- and InP-based LEDs as well as for novel CH3NH3PbI3- and nanoparticle 

PbS-based solar absorbers. In addition, Cu2O as a possible hole-transport layer for solar cells 

is examined. The framework addresses the challenge of accomplishing fast materials selection 

for heterostructure design by tying together first-principles calculations and existing online 

materials databases. 
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1 Introduction 

 

Figure 1: Schematic energy diagram of two semiconductors (shown in blue and green) with different 

band gaps Eg,1 and Eg,2 in contact. Far from the interface, outside the depletion region, electronic 

bands match those of the bulk materials. Inside the depletion region charge recombination due to different 

doping profiles causes band bending. At the interface, band-gap mismatch is accommodated via valence- 

and conduction-band offsets, δCBM and δVBM, that are determined both by the band-gap difference and 

energy alignment. 

At the interface of two semiconductors, where bulk band structures of both materials merge into each 

other, an electronic transition region forms: Band bending due to different doping profiles across the 

depletion region extends significantly into both materials, while band-edge discontinuities are confined 

to not more than a few atomic layers near the interface (see e.g. Ref. 1 and the schematic in Figure1). 

These discontinuities, also known as valence- and conduction-band offsets δVBM and δCBM, naturally occur 

at the interface of materials with different band gaps. While their signs decide whether the interface acts 
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as a barrier or conductor for electrons or holes, their magnitudes determines how good of a 

barrier/conductor the interface is. 

For any specific ideal interface, these offsets are determined by intrinsic material properties of the 

semiconductors in contact: The band-gap difference of the two materials, that is usually well-known for 

many semiconductors and insulators, fixes the sum of valence- and conduction-band offsets (see Figure 

1). The relative energy positions of valence-band maxima (VBM) and conduction-band minima (CBM) 

at the interface are referred to as “band alignment” (or “energy alignment”) and are much harder to study 

both experimentally and computationally. As a result, band alignment is generally less well-known for 

many pairs of semiconductors. At the same time, the dependence of band alignment on intrinsic properties 

of the involved materials turns the design of heterojunctions with specific alignment into an interesting 

materials-design or materials-selection optimization problem. 

Solving this ubiquitous problem of successfully designing heterojunctions with specific energy-level 

alignment has numerous applications in developing technologies of tremendous societal impact since it 

is as important as designing the active semiconductor material itself, when optimizing overall efficiency. 

For example, in the field of solid-state lighting, work on a (n-doped GaN)–(InGaN)–(p-doped GaN) 

heterostructure produced a blue light-emitting diode (LED) with greater than 50 % quantum efficiency.[2] 

For this, InGaN quantum wells were grown on the polar (202$1$) surface of doped GaN to achieve large 

wave-function overlap between layers over a wide range of current densities. However, it is the band 

alignment between adjacent layers that determines the depth of the central quantum well: Smaller offsets 

facilitate flat-band conduction between layers. Another example are organic white LEDs, that use band 

alignment to ensure charge transfer from transport layers into the active layer while simultaneously 

blocking transfer of carriers in the reverse direction.[3] Finally, in the context of photoelectrochemistry, 

Hara et al. demonstrated a novel (ZnRh2O4)–(Ag)–(AgSbO3) heterostructure that is capable of both the 

splitting of water molecules and the reduction of hydrocarbons using visible-light illumination.[4] H2 is 
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produced by a catalyzed reaction on the ZnRh2O4 surface and O2 is produced on the AgSbO3 surface. 

The central Ag layer mediates charge transfer between both separated surfaces and the relative positions 

of the valence and conduction bands force charge carriers to flow in the correct directions to drive the 

water-splitting reaction. It is, thus, not surprising that Yan et al. recently searched for anode materials for 

water splitting using band gaps and band alignment as filtering criteria.[5] 

These examples impressively illustrate an imminent need for purposeful and efficient design of 

valence- and conduction-band offsets to match desired criteria that is even more exacerbated with the 

current advent of materials design: Excellent heterojunctions are particularly necessary to turn new active 

electronic materials into specific applications. Initially, optimal electron- and hole-transport layer (ETL 

and HTL) materials, that allow translating a new electronic material, discovered using materials design 

approaches, into devices such as photovoltaic absorbers or light-emitting layers, are unknown. 

Historically, experimentation based on trial and error has been used to solve this problem. However, the 

lack of a fast and reliable approach for purposeful selection of materials for semiconductor 

heterojunctions undeniably hampers progress towards better and more efficient semiconductor electronic 

devices. Being able to identify suitable band alignment to design semiconductor heterostructures around 

a fixed active electronic material by screening a large number of candidate materials is a desirable, but 

currently unsolved, challenge. 

Screening a large number of material combinations for band offsets is very difficult in experiment, 

because sample-preparation conditions can sensitively affect quality and orientation of surfaces and 

interfaces. Carefully controlled experimental conditions similar to those in the semiconductor industry 

are needed, slowing down the process, rendering it expensive, and, thus, impractical to study large 

portions of the materials search space. In principle, computational screening of a large number of 

candidates is a promising alternative. Unfortunately, computational screening for candidate materials 

with specific band offsets is not straightforward either, since information on the band gap and on band 

alignment is needed, both of which are challenging, again leading to slow and expensive computational 
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studies: While highly accurate band gaps can be computed using techniques such as many-body 

perturbation theory,[6] hybrid exchange-correlation functionals,[7] time-dependent DFT,[6] or quantum 

Monte-Carlo calculations,[8] these schemes come at much larger computational cost than DFT and, hence, 

are not straightforwardly applicable to tens of thousands of materials. Quantum-mechanical first-

principles calculations can also be applied to quantify band alignment at semiconductor interfaces by 

computing either absolute energy positions of atomic core-electron levels,[9] electronic transition levels 

of hydrogen impurities,[10] or the alignment of vacuum levels for the materials in contact.[11] While being 

successful and accurate, the disadvantage of these techniques is, again, their high computational cost. 

Here we tackle the challenge of rapid screening for and identification of candidate materials for ETLs 

and HTLs that fulfill specific application-driven band offset criteria, by introducing a computational data-

driven framework. Thanks to recent trends in materials science, data on atomic geometries and lattice 

parameters is readily available online, e.g. from ground-state density functional theory (DFT) calculations 

[12-15] and experiment.[16, 17] In this work, based on an existing, computationally inexpensive technique [18-

20] we first approximate band alignment exclusively using bulk quasiparticle (QP) valence and conduction 

bands as critical input. This significantly reduces computational cost compared to the more accurate but 

more complicated first-principles techniques discussed above. We then modify this approach and 

interface it directly with a currently existing, digitally accessible electronic-structure database, which 

allows us to avoid additional band-structure calculations, again cutting computational cost significantly. 

Ultimately, this combination of techniques constitutes a computationally feasible, albeit approximate, 

route towards rapid and efficient materials selection for heterojunction design that is applicable to screen 

very large numbers of materials for suitable band alignment. Application of our framework enables more 

rapid development of widely used devices with higher efficiency, including semiconductor LEDs and 

novel photovoltaic absorbers for solar cells, and helps guiding the search for better photocatalytic water 

splitters. It can also facilitate fundamental research, e.g. by identifying charge accumulation near surfaces 

or yet unknown 2D electron gases. 
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In the following, we first describe our framework and then discuss verification and validation based 

on band alignment using explicit DFT calculations and comparison to the existing experimental and 

computational literature. We then integrate our framework into a materials-selection workflow and 

demonstrate that it can be successfully used for heterostructure design by applying it to LEDs and solar 

cells, as two important examples: ETLs and HTLs are proposed for CdSe and InP LEDs as well as solar 

cells using an organo-metal halide (CH3NH3PbI3) and PbS nanoparticles as absorber or Cu2O as HTL. 

All underlying input and output data and codes are made freely available online.[21,22] We envision that 

this addresses the long-standing problem of computing band alignment at a rapid rate and will 

significantly facilitate materials design of semiconductor heterojunctions. [18,20,23-26] 

2 Methods 

2.1 Band offsets 

Valence- and conduction-band offsets (see Figure 1) are determined both by the band gaps of the 

semiconductors in contact, and by the relative energy alignment, which requires a common absolute 

energy level for both materials. In experiment, band offsets can be measured using X-ray photoemission 

spectroscopy to determine the position of the valence-band emission edge as a function of doping density 

and extrapolating that data to obtain EBP.[27] First-principles techniques can be used to compute energy 

positions of atomic core-electron levels,[9] electronic transition levels of hydrogen impurities,[10] or 

vacuum levels for the materials in contact[11] and either of these can be used as absolute energy levels for 

band alignment. However, large simulation cells with tens or hundreds of atoms[28,29] (either including 

defects/impurities or material slabs and vacuum) and QP energies are needed[20] to accurately compute 

offsets from first principles. Such calculations are expensive even for specific individual interfaces, which 

is why this information cannot be produced in a high-throughput fashion, if at all, for large numbers of 

materials. 



8 

In the literature another approach exists[18-20] that uses the branch-point energy (EBP), also referred to 

as charge neutrality level or effective mid-gap energy, as a universal energy level for band alignment, 

assuming negligible interface dipoles.[1] The EBP can be entirely traced back to the bulk band structure of 

a given semiconductor.[18] Even though this is an approximation, it is advantageous in the context of this 

work, since it neglects complicated structural details of the interface that are oftentimes entirely unknown 

or hard to purposefully design in practice, or both. In order to predict band alignment, we then rely on an 

approximation to compute EBP,[18-20] that only requires the dispersion of Kohn-Sham eigenvalues, for 

which DFT results are oftentimes in good, albeit not perfect, agreement with experiment. Despite the 

approximate nature, it was shown in the literature and is verified here that the overall error bars of this 

technique are comparable to those of the first-principles vacuum-level alignment approach.[20] 

Initially, EBP was computed from energies at isolated k points[23] and, later, as a Brillouin zone (BZ) 

average based on the first of Baldereschi’s special points.[30] Finally, a sum over a full Monkhorst-Pack[31] 

k-point grid was used to compute EBP according to[19] 

In Equation 1 Nk is the number of points in the k-point mesh and the energies 𝜀()
*+(𝐤) and 𝜀()

*+(𝐤) 

describe the QP band structure of a material. Nc and Nv are the number of conduction and valence 

bands, respectively, included in the average of Equation 1 and these are parameters of this approach. 

Previously they were computed from the sum Ne of the numbers of s and p valence electrons per formula 

unit of the material, which led to an uncertainty on the order of 0.2 eV for EBP.[19] Here we optimized Nc 

and Nv  as free parameters by calculating the mean absolute error between the calculated and 

experimental EBP for the 21 semiconductors listed in Table 1, for which high-quality experimental data 

is available. Using Nc=Ne/8 and Nv=Ne/4, a mean absolute difference of 0.22 eV from the experimental 

𝐸𝐵𝑃 =
1
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values in Table 1 was found. Halving Nc and Nv produced a mean absolute difference of 0.31 eV, 

doubling these numbers led to a mean absolute difference of 0.73 eV, and using equal numbers for Nc 

and Nv also increased the mean absolute difference. Thus, in this work we use the pymatgen open-source 

library[32] to compute the sum Ne of s and p valence electrons and then set Nc=Ne/8 and Nv=Ne/4 as 

discussed above. 

In this work, we carry out the summation in Equation 1 to validate against results computed using a 

reduced sum and data from an online database, as discussed below. To this end, we perform explicit DFT 

calculations for all materials listed in Table 1 using the Vienna Ab-Initio Simulation Package[33,34] 

(VASP) and the projector-augmented wave method[35] is used to describe the electron-ion interaction. 

The generalized-gradient approximation (GGA) of Perdew, Burke, and Ernzerhof (PBE) [36] is used to 

describe exchange and correlation. Kohn-Sham wave functions are expanded into a plane-wave basis 

with an energy cutoff set to 550 eV, which is just slightly larger than what is used by Materials 

Project.[12,32] Relaxed crystal structures are chosen identically to those used on Materials Project. Γ-

centered k-point grids are selected by requiring EBP to be converged within < 0.1 eV, which is achieved 

with 16 × 16 × 16 grids for all materials listed in Table 1. Input and output files of these calculations are 

made accessible using the Materials Data Facility. [21,22] 

2.2 Online materials databases 

Computing band offsets based on EBP spares us from high computational cost caused by large 

simulation cells, since the EBP is computed entirely based on bulk band structures. One single DFT 

calculation per material is enough to evaluate the expression given by Equation 1. However, instead of 

restricting our materials search to only a small number of candidates and perform electronic-structure 

calculations within DFT for those, or performing large numbers of DFT calculations using e.g. high-

throughput computing, we here pursue a different novel and promising strategy towards accelerating 
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materials design: The increasing availability of publicly accessible online databases, that have compiled 

experimental or computational data for numerous properties of tens to hundreds of thousands of materials, 

allows us to significantly speed up our search. In particular, the desirable balance of low computational 

cost and high accuracy of DFT[37] has led to projects that contain structural information and detailed 

electronic-structure data such as band structures and densities of states[12-15, 38] for materials that were 

synthesized before and are reported, e.g. in the Inorganic Crystal Structure Database.[39] Such DFT-based 

databases have previously been used to design scintillator materials,[40] to study optical effects in 

calcites,[41] to find trends in total energy and enthalpy of formation,[42] for Li-ion battery design,[43] to 

screen electrocatalytic materials,[44] and to identify novel solar-cell absorbers[45] to name a few 

applications most closely related to our work. However, due to the large computational cost of explicit 

first-principles calculations of band alignment, none of the currently existing online databases includes 

band offsets, nor the data needed for either of the above-mentioned first-principles approaches to compute 

those. This currently prevents direct search for electron- or hole-transport layer materials based on band 

offsets tabulated in databases. 

In this work, we use the EBP to compute band alignment and we render the screening of thousands of 

material combinations possible by directly incorporating electronic-structure data that is readily 

accessible in online DFT databases. Here, we specifically rely on explicit k-point dependent band-

structure information from Materials Project,[12, 46] a currently existing and freely available online 

database with a Python API. Materials Project to date contains band structures for at least 66,676 

materials, 45,148 of which are non-metals (according to our classification discussed below) with band 

structures available. We emphasize, however, that our computational framework is independent of the 

specific database, as long as electronic-band structure and crystal-structure data is available. 

After interfacing our approach with Materials Project we are able to consider all materials as possible 

ETLs and HTLs for which this database provides band-structure data. In the following, we focus on the 

45,148 non-metals, which also illustrates why high efficiency is particularly desirable when screening 
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for suitable materials for heterojunction design: The parameter-space becomes huge. Using the non-

metals on Materials Project to build three-component heterostructures, where no two components are 

identical and the active material is in contact with exactly one electron- and one hole-transport layer, 

leads to a number of 45,148 × 45,147C2 ≈ 4.6×1013 possible permutations. Fixing the active material still 

leaves ≈ 109 possibilities to find ETLs and HTLs. Direct computational simulation of all possible multi-

component heterostructures is infeasible due to the rapidly increasing number of combinations of 

materials. Hence, even if our database- and EBP -based framework is approximate in nature and, thus, has 

limited accuracy, its extreme speed makes it nevertheless promising e.g. to narrow the vast search space 

and to identify possible candidate materials. 

2.3 Quasiparticle energies 

Unfortunately, the vast majority of band structures stored in existing materials databases and, in 

particular, many, albeit not all, band structures obtained from Materials Project suffer from the notorious 

band-gap problem of DFT. As a consequence, there are currently only very few studies[47, 48] that 

explicitly use electronic-structure data available in databases for design of excited-state properties of 

functional materials. Since DFT data is not well suited to provide accurate QP energies that are directly 

comparable to experiment, it also does not provide 𝜀()
*+(𝐤)  and 𝜀()

*+(𝐤) that are needed to evaluate 

Equation 1. This deficiency can be overcome by using more accurate computational techniques that better 

describe the electron-electron interaction,[6-8] however, these come at much higher computational cost. 

In this work, we use a two-tiered approach to determine a scissor shift that rigidly shifts conduction 

bands to produce accurate band gaps: First, whenever available, the band gap is corrected to the 

experimental value. Values are taken from literature sources and must be provided manually by the user 

in a data file, such that users can readily incorporate their own band-gap data. For instance, some groups 

have used machine learning techniques to quickly improve estimation of the DFT band gaps compared 

to experimental values.[49-51] In this work, we obtain 327 experimental semiconductor band gaps from 
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Refs. 52-55. When no experimental data is available, we employ the linear band-gap correction described 

in Ref. 40. Both cases shift EBP by half the band-gap correction, indicating that accurate data for band 

gaps is needed, since it linearly affects branch-point energy alignment. Combining our calculation of EBP 

with this two-tiered gap correction allows for quick alignment while significantly improving accuracy 

over DFT band gaps. 

Finally, all band structures available in Materials Project are provided only for bulk materials. In 

addition to the QP correction discussed above, when forming nanocrystals, the band structure is altered 

due to quantum confinement of electrons, since confining electrons to smaller regions increases the 

spacing between adjacent energy levels. In order to study band alignment with PbS nanoparticles, we 

approximate the change to the band structure as what would be found from a spherical potential well. To 

this end, we apply a scissor shift to widen the band gap using the Brus equation, which considers the 

effect of quantum confinement on the energy levels of a quantum dot. In this case,  

 

where R is the radius of the nanocrystal and m*
e and m*

h are the electron and hole effective masses.[56] 

Here we focus on the case of PbS nanocrystals as active layer, and we use a radius of 5 nm as this is a 

typical scale discussed in Ref. 57. The electron and hole effective masses m*
e  and m*

h are readily 

calculated from the Materials Project band curvatures at the CBM and VBM, respectively, using parabolic 

fits to the band structures. In cases where effective masses are direction dependent, values are averaged. 

2.4 Ranking 

No single commonly accepted computational criterion has been established for ranking the quality of 

multilayer heterostructures. Since in this work we focus on band alignment and the emerging transport 

∆𝐸g =
ℏ2𝜋2

2𝑅2
)
1
𝑚𝑒
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properties, we define a ranking criterion by considering a Drude model of semiconductors. Within this 

model, the resistivity of a material is  

 

with carrier effective mass m*, carrier density n and charge e, and carrier scattering time τ. For a material 

of thickness L, the resistance is R=Lρ. Assuming that the carrier density and scattering time are constant 

and that the thickness of the ETL, HTL, and active layer are equal, the conductance C of the entire 

heterojunction, based on Drude model conductivity, can be defined as figure of merit as 

 

Electrons travel through the entire thickness L of the ETL and holes through the thickness L of the HTL. 

In the active layer, electrons and holes only travel from where the photon is absorbed (solar cell) or to 

where the electron and hole recombine (LED). The factor of 
1
2 for the active-layer contributions arises 

from electrons and holes that, on average, would each travel through half of the active layer. 

3 Results and Discussion 

3.1 Branch-point energies: High-symmetry paths 

In order to compute EBP for band alignment using data from Materials Project, we first investigate the 

error introduced by reducing the k-point sum in Equation 1 from one over the full Brillouin zone (FBZ) 

to one only over path segments that connect high-symmetry points (HSP). This is necessary since 

Materials Project currently only provides band structures along high-symmetry paths through the 

Brillouin zone, instead of the fully converged grid required in Equation 1. Summing only over the band-

structure k-point path provided by Materials Project to compute EBP turns Equation 1 into  

𝜌 =
𝑚∗

𝑛𝑒𝜏2
 

𝐶 = 𝑅𝑇−1 ∝ (𝑚𝑒,ETL
∗ + 𝑚ℎ,HTL

∗ +
1
2
4𝑚𝑒,Active

∗ + 𝑚ℎ,Active
∗ ;<

−1

. 

(3) 
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where Nseg is the total number of segments connecting beginning and end of a band-structure plot (e.g. 

X – L – Γ – M corresponds to Nseg=3) and Nk,j  is the number of k points in the jth segment. Lpath is 

the total length of the path, i.e., the sum of lengths of all segments, 𝐿./01 ∑ 𝐿3
45
3 . Lj values are calculated 

as the k-space distance between the end points of each segment. 

Material Eg EBP,MP EBP,FBZ EBP,Exp EBP,Theor[10] EBP,Theor[20] 

Si 1.59[52] 0.49 0.39 0.36[58] 0.34 0.56 

Ge 0.67[52] -0.06 -0.04 0.09[59] -0.25 0.01 

CdO 1.91[52] 2.47 2.88 1.3±0.1[60] – – 

KBr 7.56[52] 4.51 4.70 – – – 

MgO 7.67[52] 5.21 5.48 – – – 

AlAs 2.17[52] 0.90 0.96 0.92[58] 1.05 1.04 

AlP 2.49[52] 1.25 1.25 1.13[58] 1.74 1.49 

AlSb 1.73[52] 0.49 0.51 0.53[58] 0.08 0.19 

CdSe 1.77[52] 1.56 1.71 1.83[61] 1.24 1.63 

CdTe 1.56[52] 1.16 1.27 – 0.61 0.75 

GaAs 1.43[52] 0.71 0.90 0.52[58] 0.46 0.45 

zb-GaN 3.03 2.05 2.37 – – – 

GaP 2.49[52] 0.77 0.81 0.83[58] 1.01 0.93 

GaSb 0.76[52] 0.20 0.26 0.16[58] -0.25 0.33 

InAs 0.37[52] 0.36 0.46 0.50[58] 0.19 0.38 

InP 1.38[52] 0.81 0.90 0.86[58] 0.65 0.82 

𝐸𝐵𝑃 =
1

2𝐿path
, 𝐿𝑗

𝑁𝑠𝑒𝑔

𝑗

,
1
𝑁𝐤,𝑗𝐤∈𝑗

5
1
𝑁𝑐
,𝜀𝑐𝑖

QP (𝒌)
𝑁𝑐

𝑐𝑖

+
1
𝑁𝑣
,𝜀𝑣𝑖

QP (𝒌)
𝑁𝑣

𝑣𝑖
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InSb 0.21[52] 0.10 0.16 0.22[58] -0.34 0.25 

ZnS 3.73[52] 2.09 2.22 2.05[58] 2.04 2.23 

ZnSe 2.71[52] 1.71 1.84 1.48[58] 1.45 1.75 

ZnTe 2.27[52] 1.17 1.25 1.09[61] 0.50 0.71 

HfO2 5.9[53] 2.88 2.92 2.62[58] – – 

AlN 5.33[52] 2.99 3.02 – 2.90 – 

CdS 2.49[52] 1.92 1.97 – 1.70 1.97 

wz-GaN 3.39[52] 2.38 2.40 2.51[58] – – 

InN 0.70[54] 1.40 1.45 1.64±0.1[62] 1.91  

ZnO 3.38[52] 3.42 3.42 3.2[63] 3.49 3.01 

Al2O3 7.96[52] 5.29 5.27 – – – 

LaAlO3 5.6[55] 2.47 2.48 – – – 

PbI2 2.26[52] 1.48 1.35 – – – 

SiO2 8.9[64] 5.36 5.43 4.9[58] 4.37 – 

Table 1: Numerical data for Eg and EBP (in eV) using the different approaches discussed in the text for 30 

semiconductors (experimental results are available for 21 of them). “MP” stands for Materials Project. 

All values of EBP are given relative to the valence band maxima. EBP,MP are calculated along the high 

symmetry paths using Materials Project band structures. All listed materials are shown with experimental 

gaps except zb-GaN, for which we show the linearly corrected[40] DFT gap.[12, 46]  
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Figure 2: Difference of EBP when computed from the full Brillouin zone (FBZ) and for high-symmetry 

k-point paths (HSP) only. The explicit numerical data is given in Table 1 as EBP,MP. 

Figure 2 compares EBP computed using FBZ and HSP sampling from Materials Project data for the 

30 common semiconductors listed in Table 1. This illustrates that summing only over high-symmetry 

paths produces errors in the band alignment of less than 0.4 eV for 29 of the 30 semiconductors studied 

here (only CdO has a larger difference of 0.41 eV), compared to FBZ sampling. In addition, the 

distribution is very narrow, such that the mean absolute error (MAE) is only 0.10 eV. In particular, 27 of 

the calculated EBP are still within 0.2 eV of FBZ sampling. Such a small error introduced by our approach 

is tolerable for computing EBP since it has the advantage that it can immediately be applied to existing, 

digitally available band-structure data along high-symmetry lines without any additional computational 

cost or performing additional DFT calculations. Thus, this technique is directly applicable to aligning 

valence and conduction bands of materials exclusively using the data stored in Materials Project and the 

extension to other databases[51, 65] is straightforward. 
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3.2 Branch-point energies: Validation against experiment and first-principles data 

 

 

Figure 3: Difference of EBP between experiment and HSP sampling using Materials Project data and, for 

comparison, FBZ sampling using our own VASP calculations. The explicit numerical data is given in 

Table 1. 

Nevertheless, our approach to compute EBP using band-structure data from Materials Project is 

approximate and, in particular, it neglects any interface-specific details of band alignment. For this 

reason, we validate our results against more accurate, less approximate first-principles data from Refs. 

10 and 20. In addition to a dependence on the actual interface, experimental values for EBP also depend 

on sample preparation and quality. Thus, we expect a spread in the resulting experimental values and also 

validate MAEs against experimental data from Refs. 58-63. 

To this end, Figure 3 shows the difference between EBP obtained using our technique and experimental 

data for 21 semiconductors (all rows with experimental results in Table 1). The distribution is centered 

around deviations of ≈0.1 eV, with the largest outlier showing 1.17 eV deviation, and a mean absolute 

error of 0.19 eV. 19 of the 21 materials show an absolute deviation of ≤0.3 eV compared to experiment. 

Two materials show particularly large differences: CdO (1.17 eV, not shown in plot) and SiO2 (0.46 
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eV). For comparison, Figure 3 illustrates again that switching to FBZ sampling does not change the 

distribution significantly, and the MAE in this case amounts to 0.22 eV. 

Vacuum-level based band alignment for 17 of the 30 materials in Table 1 was investigated from first 

principles[20] using QP energies from the GWΓ1 approximation to determine the ionization potential and 

electron affinity, leading to a MAE of 0.28 eV for EBP relative to experimental values listed in Table 

1. Using our approach based on Materials Project data, we find a MAE of 0.12 eV for these same 

materials[20] at tremendously reduced computational cost. Similarly, hydrogen-level alignment[10] leads 

to a MAE of 0.32 eV compared to experiment, while our method for the materials studied in Ref. 10 has 

a MAE of 0.31 eV. 
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Figure 4: Band alignment for a set of 45 common semiconductors, arranged by crystal symmetry group 

number with crystal system shown below. EBP, computed for the high-symmetry path from Materials 

Project using Equation 5, is used as energy zero. Blue and red bars indicate valence and conduction bands, 

respectively, the white space in between is the band gap. Materials labeled in red are predicted to be 

gapless within DFT, prior to application of the gap correction. Green dots are computational results from 

Ref. 10. Cyan diamonds are computational results from Ref. 20. Purple hexagons are experimental 

results, see Table 1 for references. Black circles are experimental results from Ref. 66. EBP was calculated 

from the data in Refs. 10, 20, and 66 by designating Si as a reference material. EBP was then set to 0.49 

eV above the Si VBM, matching the EBP calculated from the Materials Project band structure of Si. EBP 

values for the remaining materials were found from the energy difference between the reference EBP for 

Si and each material’s VBM.  

Next, in Figure 4 we compare our results for EBP for a larger set of 45 common semiconductors to 

literature data. As can be seen from the various data points that cluster around the 0 eV line, our approach 
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agrees reasonably well with other techniques and experiment. More specifically, the purple dataset 

illustrates all experimental data of Table 1 and shows a MAE of 0.20 eV with respect to our data. For the 

materials listed in Ref. 66, shown as black circles in Figure 4, the MAE between our computed values 

and experiment is 0.52 eV. 

Figure 4 also shows that for two materials with heavy elements, Ta2O5 and PbO, the branch-point 

energies disagree with measured values by more than 2.5 eV. Our first-principles results show that 

inclusion of spin-orbit coupling in the band-structure calculations for these materials lowers the branch-

point energies by 0.03 eV and 0.06 eV, respectively, and, hence, has no significant influence. In the case 

of five materials (CdO, PbO, SiO2, Ta2O5, and TiO2) for which computed and experimental EBP also 

agree poorly, we use QP energies computed using the HSE06 hybrid functional[67-69] and apply a scissor 

shift to correct the band gaps to the experimental values. Use of the HSE06 functional improves 

agreement only in the case of Ta2O5, by increasing EBP by 0.02 eV. For all other examined materials the 

calculated EBP is further from the experimental value and the largest shift is observed in PbO in which 

EBP is decreased by 0.19 eV. Since in both the GGA and HSE06 calculations the band gaps are corrected 

to the same experimental values, the observed shifts of EBP are due to changes in band dispersion. More 

specifically, the HSE06 functional better reproduces the energy dependence of QP corrections, which 

leads to larger shifts the higher or lower states are in energy, compared to states near the VBM and 

CBM.[24, 70] Overall this shows that both spin-orbit coupling and QP energy corrections to the band 

structure are ruled out as sources of disagreement between the experimental and computed values. In a 

future study, we plan to explore this disagreement for specific materials more systematically, by 

performing first-principles vacuum-level alignment calculations. However, this goes beyond the scope 

of the present work. Furthermore, we note that comparison to individual experimental data points is 

difficult, as can be seen from the scattering in Figure 4, highlighting the above-mentioned sensitivity of 

band alignment to specific experimental conditions. More specifically, in the case of CdO, Piper et al.[71] 
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reported charge accumulation on the surface, which is consistent with our result of a branch-point energy 

laying above the CBM. 

In summary, this leads us to conclude that our technique is promising because of its overall satisfactory 

accuracy that is comparable to other standard techniques used in the literature. Given its extreme speed 

and applicability we can now compute EBP and band alignment exclusively using electronic-structure 

data available in online databases, which enables a fast initial screening for very large numbers of 

materials. However, the agreement is not perfect and the error bars discussed above need to be kept in 

mind for applications, e.g. by refinement using more accurate but more expensive follow-up first-

principles calculations for the most promising candidate materials. We note that we also explored a 

suggestion by Moench (Ref. 1), which uses the electronegativity difference of the two materials forming 

the interface to compute an interface-dipole correction. Unfortunately, we found that this approach cannot 

systematically improve the results and MAEs for the compounds shown in Fig. 4 indicated either no 

improvement, or even increased upon inclusion of this dipole correction. 
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3.3 Materials selection: Heterojunction design framework 

 

Figure 5: Distributions of VBM and CBM using branch-point energy alignment and band-gap correction 

for 5,824 elemental or binary semiconductors (top), 21,202 three-element semiconductors (middle), and 

all 45,148 semiconductors (bottom) in Materials Project. Only filtering to remove metals has been 

performed. The VBM (blue dashed line) and CBM (red dashed line) of silicon are included for reference.  

Using branch-point energies to align VBM and CBM of all 45,148 non-metals on Materials Project, 

leads to the distribution depicted in Figure 5. This figure shows that there are at least 500, and in many 

cases more, materials available for any branch-point energy between 0 and 3.5 eV below the CBM as 

well as 0 and 4.3 eV above the VBM. This illustrates that many possible candidate materials are identified 

by our approach for a given active material in a heterojunction and desired band alignment. 
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At the same time, Figure 5 suggests a possible rough band-alignment design criterion: Among the 

elemental and binary materials, the distributions of the VBMs and CBMs peak at −0.2 eV and 0.3 eV, 

respectively. For the ternary and all materials, the distributions become bimodal with secondary peaks at 

≈−2.2 eV and ≈ 1.5 eV. Hence, for applications requiring the VBM or CBM to be near EBP, elemental 

or binary materials should be considered first, while many more materials with three or more elements 

are available for structures requiring the VBM or CBM to be further from EBP. This guidance is 

beneficial when several criteria need to be fulfilled simultaneously, for instance when lattice matching is 

needed for heterostructure design. 

Furthermore, Figure 5 illustrates that only a small fraction of materials has a branch-point energy that 

is located outside the band gap. As discussed above for CdO, it can be interpreted as an indicator for 

surface-charge accumulation if the branch-point energy occurs either in the valence or in the conduction 

band. Examples for materials where this occurs, as predicted by our approach, include ZnGeO3, SnO2, 

AlCuO3, and In2O3. Indeed, charge accumulation has been measured experimentally in In2O3 by King 

et al.[72] Another material where charge accumulation was reported previously is InAs[73, 74] and our 

approach predicts the branch-point energy 0.01 eV underneath the CBM. Similarly, the branch-point 

energy lying below the VBM may indicate hole accumulation and predicted example materials include 

Sr2VO4, Ti2O3, TiCl3, and GeAs. Extracting this information from our results provides a feasible route 

to further verify branch-point energy alignment experimentally and also to identify materials that show a 

tendency for either intrinsic n- or p-type behavior. 
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Figure 6: Band structure configurations utilized in this work to screen for (a) LEDs (CdSe, InP) and (b) 

solar cells (CH3NH3PbI3, PbS nanocrystal, Cu2O). Black arrows indicate direction of intended carrier 

flow in devices for each structure. Blue and red bars indicate valence and conduction bands, respectively, 

the white space in between is the band gap. The offsets needed to block flow are obtained by considering 

charge carriers to follow a Boltzmann distribution. At an operating temperature of 60 ∘C, an offset of 0.2 

eV is sufficient to block 99.9 % of thermal carriers. Limiting the size of offsets for bands relevant to 

conduction prevents the accumulation of charge at the interfaces.[75] 

In the following, however, we apply our technique for computing band alignment to study LEDs and 

photovoltaic cells as proof of concept applications for heterojunction design. The design in both is 

similar,[76] in that an active component, the emitter in an LED or the absorber in a solar cell, is selected 

first, based on application- or fabrication-driven criteria. The shape and material of the active component 

must be chosen to maximize photon absorption/emission, charge separation, and charge transport. This 

layer is then sandwiched by ETL and HTL materials (schematically shown in Figure 6) that usually can 

be picked more freely, but must transport charge carriers without recombination.[77, 78] Most importantly, 

(a) (b) 
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ETL and HTL must demonstrate efficient electron/hole transport between the photolayer and other 

connected circuitry and act as barriers in the opposite direction. To study LEDs in this work, we pick 

CdSe and InP as emitter materials, since both are commonly used in practice which makes them ideal 

test cases. For solar cells we focus on a new and promising hybrid perovskite CH3NH3PbI3 absorber 

and also study PbS nanocrystals. Finally, we look at a variation of the approach by studying solar cells 

but fix the HTL material as Cu2O. 

 

Figure 7: Flow chart used to filter for ETL and HTL materials for LEDs and solar cells. Listed in the 

bottom two boxes are the numbers of predicted heterostructures for each composition. 
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In order to design semiconductor heterojunctions, we introduce a scheme that uses “filters” to identify 

materials that are relevant out of all non-metallic materials available in Materials Project. DFT electronic 

band structures are queried sequentially based on their “Materials Project ID” using the pymatgen library. 

The band structures are then used to compute EBP, ECBM, EVBM, m*
e, and m*

h. The overall approach is 

visualized diagrammatically in Figure 7 and explained in the following. 

Since we focus on search for ETL and HTL materials, the first step (see Figure 7) is to filter out metals. 

To this end, the pymatgen library averages the energies of each band and selects the band with the highest 

average energy below the Fermi energy as the highest valence band and lowest average energy above the 

Fermi energy as the lowest conduction band. The library then provides the maximum of the highest-

energy valence band as EVBM and the minimum of the lowest energy conduction band as ECBM. In general, 

metals are characterized by ECBM - EVBM ≤ 0 eV and semiconductors are gapped, i.e. ECBM - EVBM > 0 eV 

eV. However, since DFT underestimates band gaps, small-gap semiconductors can appear gapless in the 

Materials Project data or negative values of ECBM - EVBM can occur, e.g. for indirect-gap semiconductors. 

For this reason we apply the gap correction scheme first and then retain materials with ECBM - EVBM > 0 

eV as semiconductors. We use the condition ECBM - EVBM ≤ 0 eV (after gap correction) to designate metals 

and to exclude them from further consideration in this work. 

We note that, in general, this approach has difficulty distinguishing between small-gap 

semiconductors which appear gapless due to the DFT band-gap error and metals with flatter band 

dispersion near the Fermi level. Using the criterion described above, we attempt to not accidentally 

exclude semiconductors, however, ultimately, this needs to be fixed manually: Spuriously included 

metals must be removed by the user. In the particular heterostructure alignments studied in this work, the 

issue of distinguishing between metals and small-gap semiconductors is avoided since the offset criteria 

(see Figure 6) effectively constrain the band gaps of the transport layers, that are adjacent to a fixed active 

layer, to within a certain range. As an example, consider a CdSe emitter LED with band alignments shown 
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in Figure 6(a). CdSe has an experimental band gap of 1.77 eV. The band alignment criteria then require 

both the ETL and HTL to have band gaps of at least 1.87 eV. For a materials to satisfy Eg≥1.87 eV, it 

would either need to have an experimental band gap of at least 1.87 eV or if an experimental gap is not 

available, a DFT calculated band gap of at least 0.71 eV prior to linear correction. 

The next stage (see Figure 7) applies filters to the remaining non-metals. Materials that are not solid 

under ambient conditions (e.g. Materials Project ID mp-20066 corresponds to CO2) were filtered out 

using the density stored in Materials Project, only keeping those with density >2 g/cm3. Unstable 

materials are removed by retaining only those with energies above Hull, EHull, that are smaller than 0.01 

eV. While stability requires EHull=0 eV, we allow for materials with small nonzero EHull, due to possible 

errors of the total energy deriving from the approximate treatment of exchange and correlation within 

DFT. The specific value is readily adjustable by the user. Viability of fabrication is taken into account by 

imposing that (i) compounds contain at most three different atomic species, and (ii) unit cells contain at 

most 45 atoms. Pauling electronegativity differences were used to exclude water soluble compounds. Our 

filter allows a maximum difference in electronegativity of 2.5 between the most and least electronegative 

element in a material. Finally, compounds which contain radioactive elements (Ac, Th, U, Np, Pu, Tc, 

Pm) or noble gases are filtered out as well. After applying all filters, band gaps are corrected using the 

two-tiered approach discussed above. In the final stage before constructing heterostructures users may 

specify compositions and radii of nanocrystals and in this case, the band gap and EBP is further corrected 

using Equation 2. 

This entire process, schematically shown in Figure 7, is implemented as jupyter notebook,[79] which 

is compatible with the pymatgen library, and allows users to easily alter, add, or remove any of the filters. 

It also makes selecting the number of materials and the desired target band offsets (discussed below) 

between materials very easy. At the same time, using this code to down-select the maximum possible 

number of 109 heterostructures discussed earlier did not take longer than 10 minutes on a single CPU. 
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This notebook is also available in the Materials Data Facility.[21, 22] Some of the inaccuracies of the input 

to our framework, such as the linear band-gap correction and the neglect of interface induced 

perturbations of the atomic and electronic structure, can be addressed using the following multi-step 

procedure: First, we apply branch-point alignment to reduce the number of candidate materials from 

many thousands to a manageable count. For this step, band-alignment criteria should be adjusted to be 

not too restrictive, to not exclude too many promising candidates. Once the list has been reduced to tens 

to hundreds of materials, more accurate but more expensive first-principles calculations can then be 

applied to refine the band-gap information as well as to study atomic rearrangements and perturbations 

of the bulk electronic structure near the interface. 

 

3.4 Materials selection: Heterojunction design results 

The remaining candidate list comprises of 1,731 binary compounds or 5,899 materials if ternaries are 

included. As discussed above, ECBM, EVBM, EBP, EBP, m*
e, and m*

h for each compound were determined. 

The energies of the VBM and CBM relative to EBP are used for determining offsets between materials. 

The effective masses determine the conductive figure of merit in Equation 4. We then use this information 

to design possible three-component heterostructures as showcase applications and to demonstrate our 

framework. Two heterojunction LEDs, two photovoltaic absorber materials, and one photovoltaic HTL 

material are used as examples in this work. 

Literature data is not consistent on the issue of exact absolute positions of bands that are ideal for 

ETLs and HTLs in these devices and we use the band-alignment criteria illustrated in Figure 6. They 

require the CBM of the ETL to be between 0.2 eV and 0.4 eV above the CBM of the active layer. These 

offset values are taken from Ref. 80 which measured an offset of 0.2 eV would produce a near ideal 

I∼V2  at low applied bias with increasing offset requiring larger biases to function efficiently. In 
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experiment cases were reported where CBM of the ETL is below[81] or above[82] the CBM of the active 

material. This can be readily adjusted in the code. In the example of a Cu2O HTL solar cell, no explicit 

condition is placed on the band gap of the active layer. Instead, these follow from the band gap of Cu2O 

and the chosen alignment criteria: For Cu2O, with a band gap of 2.23 eV,[52] the offset criteria shown in 

Figure 6 imply that the active layer must have a band gap between 2.03 eV and 2.43 eV. Band gaps in 

this range would allow for absorption of part of the visible spectrum and, even if not optimal, make this 

a reasonable test case for photovoltaic applications in this work. 

Example Binary Ternary 
LED (CdSe) 264 7,922 
LED (InP) 1,764 34,944 

Solar Cell (CH3NH3PbI3) 144 568 
Solar Cell (PbS nanoparticle R = 5 nm) 212 1,278 

Solar Cell (Cu2O HTL) 4 15 

Table 2: Number of possible three-component heterostructures that satisfy all criteria applied for our 

showcase applications. The ternary column includes all binaries.  

For all five examples, the number of heterostructures which pass all filters and satisfy the band-

alignment criteria in Figure 6 are given in Table 2. Table 3 and Table 4 show several promising 

examples, either based on their figure of merit or since they have been successfully used in the 

experimental literature before. The entire list of results is available on the Materials Data Facility.[21, 22] 

As would be expected, significantly more heterostructures are predicted if ternary compounds are allowed 

in addition to pure elements and binaries. The number predicted further depends on how many materials 

in Materials Project have the correct band alignment and the range of band offsets allowed. The band 

alignment conditions in this work are stricter for the solar cells than LEDs. As a result, there are fewer 

predicted solar cells than LEDs. 
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Example ETL Active HTL 
LED Ca3N2, Mg3N2, ZnSeO4 CdSe CdS,[83] WO3,[84] 

MoO3,[85] SiC[86] 
LED ZnSe,[87] CuI, NaBiS2[88] InP GaSe, V2O5,[89] 

SrCuO2[90] 
Solar Cell WO3, In2S3[91] CH3NH3PbI3 Mn3O4, Cr2O3[92] 
Solar Cell PdS, Fe3Si[93] PbS, R = 5 nm MnP, Cr3S4 
Solar Cell Ca2Cu2O5 CdS[94] Cu2O 

Table 3: List of promising examples picked from the final results. Materials listed here were chosen due 

to either high figures of merit, Equation 4, or because they appear in the experimental literature (indicated 

by the corresponding reference) performing the listed function in heterostructures.  

 

Example ETL Active HTL 
LED CdS[95] CdSe LaB6 
LED Ba3(SnP2)2 InP TePb 
Solar Cell CdSe[96] CH3NH3PbI3 KAuI3 
Solar Cell Cs3Bi PbS R = 5 nm Sb3Pd8 
Solar Cell CuBr PdI2 Cu2O 

Table 4: Top-ranked heterostructures using the figure of merit in Equation 4. Materials followed by a 

reference are found in the experimental literature performing the listed function in heterostructures. 

In the following, we discuss the examples listed in Tables 3 and 4 as potentially viable heterojunctions. 

Starting with ETLs, we find ZnSe to be suitable for the InP LED and it has indeed been used in experiment 

for electron conduction.[97] NaBiS2 is the third-highest ranked ETL for InP LEDs and it appears as a 

possible battery anode material in the literature.[88] We predict CdSe to be the highest performing ETL 

for CH3NH3PbI3 and it has also been used in experiment for a perovskite solar cell.[96] Another example 

is In2S3, which was identified by our approach and, using our figure of merit, is the fourth highest ranked 

ETL for CH3NH3PbI3 solar cells. It has been reported as a viable ETL for CH3NH3PbI3.[91] In addition, 

we predict CdS to be an ETL for CdSe and it has appeared in the literature before in this context.[95] 
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Finally, for PbS nanocrystals the fourth ranked ETL is Fe3Si and it is identified as a transport layer in 

magnetic tunnel junctions owing to its large spin polarization of electrons near the Fermi energy.[93] These 

examples clearly demonstrate that our framework can successfully identify important ETLs that were 

implemented in practice. 

Among the HTLs listed in Table 3, amorphous SiC has been used for hole conduction before.[86] For 

CdSe LEDs, the commonly used HTL materials WO3
[84] and MoO3

[85] are both predicted to have suitable 

band alignment to act as HTLs. For the LED test cases studied in this work, most of the top-ranked (based 

on the figure of merit) ETLs or HTLs, such as Ba3(SnP2)2, LaB6, and TePb, are not reported in the 

experimental literature. While this could be due to the simplicity of our figure of merit used for ranking, 

or the approximations used in our approach, it may also mean that they are actually better ETLs or HTLs 

but have yet to be tested. It would, therefore, be most interesting to investigate their viability in 

experiment to test our predictions. Finally, for the Cu2O based solar cell, our algorithm predicts PdI2 as 

an active layer (see Table 4), but it does not appear in the literature as a solar cell absorber. It has an 

indirect band gap of 2.17 eV and a direct band gap of 2.18 eV, using the linear band-gap correction. DFT 

results on Materials Project predict flat bands near the VBM and CBM with high electronic densities of 

states. In addition, PdI2 would not be viable for large scale application due to the high cost of Pd. 

Contrary, the predicted second highest figure of merit structure for Cu2O solar cells contains CdS as an 

absorber. CdS has been reported as a solar cell absorber in the literature with a Cu-containing HTL.[98] 

Conversely, some experimentally known ETLs or HTLs are not present in our list. The reasons for 

this can be, generally, grouped into three different categories, that will be discussed next: 

(i) Band gaps: As discussed above, accurate band gaps are needed, because they directly enter the 

branch-point energy and, thus, the alignment and selection criteria (see Figure 6). While this is a problem 

in general, it is not a problem intrinsic to our approach, since we explicitly allow the user to provide 
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accurate band-gap data and only resort to a simple correction scheme if such data is absent. Incorporating 

more reliable band-gap data into our scheme is straightforward. 

(ii) Branch-point alignment: For TiO2, which is known as an ETL,[99] the band gap is corrected to the 

experimental value of 3.2 eV, however it is still not listed as viable here for CdSe- or InP-based LEDs. 

The reason is that our branch-point energy alignment predicts TiO2 to have a higher VBM than CdSe. 

This contradicts Ref. 66 which measures the VBM of TiO2 to be 2.21 eV below the VBM of CdSe and 

the CBM of TiO2 in the gap of CdSe, making TiO2 a viable ETL for a CdSe LED. The band alignment 

predicted by our approach incorrectly implies that holes could escape the active layer through the TiO2 

layer, lowering device efficiency. We also do not identify TiO2 as a suitable ETL for InP because the 

CBM of TiO2 is 1.2 eV above the CBM of InP, based on branch-point energy alignment. In Ref. 66, the 

CBM of TiO2 is found to be 1.03 eV below the CBM of InP and the VBM of TiO2 2.82 eV below the 

VBM of InP. We plan to investigate the origin of disagreement between branch-point energy alignment 

and experiment, e.g. for TiO2, in more detail. One possible reason is charge transfer at interfaces of 

semiconductors[1] and in future work we will explore this in more detail. Independent of this, the user can 

easily incorporate their own, potentially more accurate, band-alignment data into our framework and still 

use it for fast identification of candidate materials. 

(iii) Alignment criteria: While MoO3 and WO3 are predicted to be HTLs for CdSe LEDs, neither is 

predicted suitable for use with InP. Both are excluded because their VBM offsets are more than 0.4 eV 

below the VBM of InP: The VBMs of WO3 and MoO3 occur 0.92 eV and 1.03 eV below the VBM of 

InP, respectively. Similarly, for another experimentally known ETL, ZrO2,[100] the branch-point energy 

alignment computed in this work predicts a higher energy CBM and lower energy VBM than CdSe and 

InP, which would make it possible to act as an ETL. However, the CBM of ZrO2 is 2.59 eV above the 
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CBM in CdSe and 2.37 eV above the CBM in InP and, thus, outside of our allowed ranges (see Figure 

6). CuO, as another viable HTL,[89] is omitted even if the gap is adjusted to the experimental value of 

1.35 eV.[101] For a material to be a transport layer according to our criteria (see Figure 6), its gap must be 

at least 0.4 eV larger than the active material, but the experimental gaps are 1.77 eV in CdSe and 1.38 eV 

in InP.[52] NiO[102] is excluded due to its VBM being 1.99 eV above the VBM of CdSe and 1.24 eV above 

the VBM of InP. Again, this is easy to address and while in this work we follow the recommendation of 

Ref. 80 for band-alignment criteria, these ranges can be readily adjusted to the user’s discretion. 

A combination of these reasons explains why the (ZnO)–(PbS nanocrystal)–(NiO) solar-cell 

heterostructures reported in Ref. 57 are not identified in our work: Using band alignments calculated here, 

the CBM and VBM of ZnO are 0.05 eV and 3.01 eV below the PbS CBM and VBM, respectively. The 

PbS CBM and VBM are 3.14 eV and 0.84 eV below the CBM and VBM of NiO, respectively. Our 

prediction of the PbS nanocrystal CBM lying above the ZnO CBM is consistent with the alignment found 

in Ref. 57. However, alignments between PbS and NiO differ significantly with Ref. 57 calculating the 

PbS VBM to be within the possible ranges of NiO VBM energies, while our alignment predicts the NiO 

VBM to be 0.84 eV above the PbS VBM. In addition, there is a further issue that the VBM of NiO is 0.34 

eV above the CBM of the PbS nanocrystal. With such a configuration, electrons would be able to flow 

from the NiO valence states into the PbS conduction states. Such a configuration would not be suitable 

for a solar cell, but could be applied to constructing a semiconductor laser. In all these cases, merely 

adjusting the alignment of the bands of the three materials would not be sufficient to meet the band offset 

conditions described in Figure 6 due to the implicit requirements for the material band gaps discussed 

above: According to Ref. 57, the PbS nanocrystals have a band gap of 0.50 eV. In order to satisfy the 

corresponding alignment criteria in Figure 6, the ETL and HTL band gaps must be between 0.30 eV and 

0.70 eV, but ZnO and NiO have band gaps of 3.38 eV and 2.81 eV, respectively.[52] Hence, the 

experimentally studied heterostructure is also excluded due to our choice of alignment criteria. 
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Overall, the different examples discussed above clearly show that several of the materials identified 

by our framework have successfully been used before in practice, which illustrates that it is successful 

for heterojunction design. Several, so far untested, possible candidates are predicted and require 

experimental testing to judge whether they would work in practice and, potentially, even improve over 

state-of-the-art materials. Three sources of uncertainty are identified here as reasons for why several 

materials that are used in practice do not occur in our results and we discuss steps to fix those. 

4 Conclusions and Outlook 

We described, validated, and demonstrated a computational framework for fast screening of large 

numbers of materials in order to achieve efficient computational design of semiconductor 

heterojunctions. Its computational efficiency derives from (i) approximating band alignment using 

branch-point energies and (ii) directly incorporating band-structure data from the Materials Project online 

database. We confirm for common semiconductors that branch-point energy alignment leads to results 

with mean absolute errors relative to experiment that are comparable to those of more accurate but more 

expensive first-principles techniques. We further show that this approach can be directly applied to 

existing, freely available band-structure data without a significant sacrifice in accuracy. This eliminates 

the need to perform additional electronic-structure calculations for materials that are already part of 

Materials Project and the extension to other databases is straightforward. 

We then use this approach in a materials selection framework to predict three-component 

heterostructures as showcase applications: Heterojunctions are designed for CdSe and InP based LEDs, 

for hybrid perovskite CH3NH3PbI3 and PbS nanocrystal photovoltaic absorbers, and Cu2O as hole-

transport material for photovoltaics. Each of these takes only minutes on a single CPU and we rank results 

using the Drude model conductivity as figure of merit. Comparing our predictions to literature data shows 

that we are able to successfully identify electron- and hole-transport layers that are used in practice. Cases 

that are not successfully predicted are traced back to one of three different causes and strategies are 
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outlined to address these shortcomings. Several candidates are predicted that are currently not used in 

heterojunctions and we encourage experimental work to measure performance of those materials in the 

context of semiconductor heterostructures. 

The code developed in this work is implemented as freely available jupyter notebook, which makes it 

readily applicable for other users. It can be used to directly design desired semiconductor heterostructures, 

or, at least, to reduce the vast candidate search space. It is applicable to existing data in materials databases 

and, in addition, it is immediately compatible with new high-throughput density-functional theory work. 

Since our framework efficiently ties together first-principles calculations and existing databases for an 

important application, we are optimistic that it can tremendously accelerate the search for novel high-

efficiency LEDs, solar cell devices, photocatalytic water splitters, or 2D electron gases confined to 

semiconductor interfaces. Our framework contributes to solving the grand challenge of efficient 

heterojunction design and, as such, we envision that it will be used in research with broad societal impact. 

In addition, we see great potential for addressing fundamental scientific problems, including the search 

for materials with surface-charge accumulation or intrinsic n- or p-type behavior. 
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