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Explicit integrators for real-time propagation of time-dependent Kohn-Sham equations are compared
regarding their suitability for performing large-scale simulations. Four algorithms are implemented
and assessed for both stability and accuracy within a plane-wave pseudopotential framework, em-
ploying the adiabatic approximation to the exchange-correlation functional. Simulation results for a
single sodium atom and a sodium atom embedded in bulk magnesium oxide are discussed. While
the first-order Euler scheme and the second-order finite-difference scheme are unstable, the fourth-
order Runge-Kutta scheme is found to be conditionally stable and accurate within this framework.
Excellent parallel scalability of the algorithm up to more than a thousand processors is demonstrated
for a system containing hundreds of electrons, evidencing the suitability for large-scale simulations
based on real-time propagation of time-dependent Kohn-Sham equations. © 2012 American Institute
of Physics. [http://dx.doi.org/10.1063/1.4758792]

I. INTRODUCTION

Accurately describing the quantum dynamics of electrons
in numerical simulations is crucial for addressing a number of
important problems in materials physics as well as chemical
physics. For example, detailed understanding of the electron
transfer mechanism across material interfaces is important for
improving photovoltaic cells1 or massive electron excitation
in materials under matter radiation.2 While analytical mod-
els often work reliably for describing electron transport phe-
nomena in simple and homogeneous systems (such as organic
molecules or bulk solids), quantitative simulations are neces-
sary to accurately describe the dynamical effects of electrons
in complex environments. The proper treatment of the elec-
tron dynamics is also necessary for describing highly non-
equilibrium many-body electron-ion processes such as the
radiation damages in materials. A variety of numerical sim-
ulations, semi-empirical3 and ab initio, however, lack the es-
sential component: the response of the electrons to a large
perturbation of the atomic motion. This is because the
aforementioned approaches rely on the adiabatic Born-
Oppenheimer (BO) approximation,4 i.e., on the assumption
that the electrons adjust instantaneously to moving ions (e.g.,
by remaining in the ground state). This approximation can
be overcome, for instance, by Ehrenfest dynamics5 or the
surface-hopping approach for a more sophisticated treatment
of the electron dynamics.6

Time-dependent density functional theory (TDDFT)7 is
an attractive approach for describing quantum dynamics of
electrons in materials because of its well-balanced accuracy

a)Authors to whom correspondence should be addressed. Electronic
addresses: ykanai@unc.edu and correaa@llnl.gov.

and efficiency. TDDFT, as a formal extension of ground-
state DFT8 for the treatment of time-dependent Hamiltonians,
has been applied to various problems in many different ar-
eas ranging from materials science to biochemistry (see, e.g.,
Ref. 9 and references therein). The popularity of TDDFT in
various fields has led to a number of recent developments in
the formal theory itself as well as in the practical aspect of
implementing the theory for numerical calculations.10–14

While the majority of applications currently exploits the
linear-response formulation of TDDFT15 to investigate the
excitation of electrons based on the ground-state solution
of the Kohn-Sham (KS) equations,16 the so-called real-time
TDDFT (RT-TDDFT) aims at explicitly obtaining the time-
dependence of electronic states through the time-dependent
KS Hamiltonian. Using RT-TDDFT, it is possible to compute
electronic excitation spectra from the dynamics itself, in addi-
tion to investigating the quantum dynamics of electrons in real
time. The RT-TDDFT approach is gaining increasing popu-
larity as many time-dependent phenomena are becoming an
important focus of modern materials research.

In this work, we numerically assess four explicit in-
tegrators that have been successfully and widely used to
solve ordinary differential equations, regarding their suitabil-
ity for the time-dependent Kohn-Sham (TDKS) equations—
a set of coupled and nonlinear partial differential equations.
The integrators that we employ belong to the category of
explicit (time forward), spectral (spatial plane-wave basis
set) methods and feature an appealing algorithmic suitabil-
ity for large-scale simulations. We have built our RT-TDDFT
implementation upon the Qbox code,17, 18 a highly scalable
DFT code based on the plane-wave pseudopotential formal-
ism. The excellent scalability of underlying components in

0021-9606/2012/137(22)/22A546/9/$30.00 © 2012 American Institute of Physics137, 22A546-1

Downloaded 03 Jun 2013 to 128.15.210.91. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1063/1.4758792
http://dx.doi.org/10.1063/1.4758792
http://dx.doi.org/10.1063/1.4758792
mailto: ykanai@unc.edu
mailto: correaa@llnl.gov


22A546-2 Schleife et al. J. Chem. Phys. 137, 22A546 (2012)

the code and employing explicit integrators allows us to im-
mediately apply the new method to the large heterogeneous
systems needed to explore modern applications. At the same
time, the plane-wave basis will ensure broad applicability to
a diverse set of materials and even periodic bulk solids, as
numerical convergence can be rigorously tested by systemat-
ically increasing the basis size. We stress that the interplay of
accuracy and numerical stability observed in this work is not
obvious and cannot be expected a priori when classical inte-
gration methods are adapted for the nonlinear TDKS partial
differential equations.

The paper is structured as follows: In Sec. II, the theoret-
ical framework is outlined and computational details are dis-
cussed. In particular, the conservation of energy is presented
as a criterion to assess the numerical stability and accuracy
of the propagators that are introduced in Sec. III. In the fol-
lowing, these integrators are applied to two test systems, that
represent two limiting cases: (i) an isolated sodium (Na) atom
(Sec. IV) and (ii) a periodic solid, modeled using a 64-atom
supercell containing a Na atom embedded in bulk magnesium
oxide (MgO) (Sec. V). Finally, Sec. VI summarizes the find-
ings of this work.

II. THEORETICAL FRAMEWORK
AND NUMERICAL TREATMENT

A. Time-dependent Kohn-Sham equations

TDDFT is based on the one-to-one correspondence be-
tween the (time-dependent) one-particle density n(r, t) and
the (time-dependent) one-particle potential Vext(r, t) acting
on a fictitious system of non-interacting particles with the
(same) ground-state density. This correspondence is estab-
lished by the Runge-Gross theorem7 which formally extends
the Hohenberg-Kohn theorem8 to the time-dependent case.
As a consequence of the Runge-Gross theorem, it is possi-
ble to also generalize the fictitious system of non-interacting
KS particles16 under the influence of an effective KS potential
to the time-dependent case. These TDKS equations read

i¯
d

dt
|φi(t)〉 = Ĥ (t)[n]|φi(t)〉

= {T̂ + V̂ext(t) + V̂HXC[n]}|φi(t)〉. (1)

In Eq. (1), T̂ is the kinetic energy operator − ¯2

2me
∇2

r and

VHXC[n](r, t) = ∫
n(r′,t)
|r−r′| dr′ + δEXC

δn(r,t) is the sum of the Hartree
(H) potential and the exchange-correlation (XC) potential,
which is derived from a universal XC functional EXC[n]. The
electron density n follows from the occupied KS orbitals
(labeled by the index i) according to

n(r, t) =
∑

i

|φi(r, t)|2. (2)

RT-TDDFT aims at obtaining the (time-dependent) solu-
tions to the nonlinear TDKS equations (1) for given initial
conditions for φi. It is assumed that the so-called adiabatic
functional approximation19 (in which the XC functional de-
pends only on the electron density at instantaneous time) is

fulfilled, i.e., VHXC[n](r, t) ≡ V adiab
HXC [n(t)](r) = ∂EHXC

∂n(r) [n(t)].
In addition, the external potentials Vext studied in this work
are not explicitly time dependent since they arise exclusively
from the Coulomb attraction of the electrons to the ions at
their fixed positions. However, the Hamiltonian Ĥ (t)[n] does
depend on time through the density, which we emphasize by
the notation Ĥ [n(t)] in this work. In what follows, we refer
by “self-consistency” to this aspect of the problem by which
the instantaneous density must, in principle, be used at each
step of the real-time integration.

In order to solve the TDKS equations (1), a set of ini-
tial conditions for the wave functions is necessary; in this
work, they are represented by the perturbed ground-state wave
functions. They are obtained by applying an initial perturba-
tion (see below) to the solutions of the time-independent KS
Hamiltonian.

B. Energy conservation during the propagation

The TDKS equations [cf. Eq. (1)] reduce to the KS equa-
tions in the case that the time dependence is factored out.
In addition, within the adiabatic approximation they have the
property to conserve the total energy E(t),

E(t) =
∑

i

〈φi(t)|T̂ |φi(t)〉

+
∫

n(r, t)Vext(r, t) dr + EHXC[n](t), (3)

which is a generalization of the time-independent KS
energy.20 For the case of HXC potentials that only depend
on the instantaneous density, i.e., the adiabatic functional ap-
proximation, the conservation of the energy21 can be seen
from the total time derivative of Eq. (3),

dE(t)

dt
=

∑
i

{
〈φi(t)|T̂

∣∣∣∣ d

dt
φi(t)

〉
+ c.c.

}

+
∑

i

{
〈φi(t)|V̂ext(t)

∣∣∣∣ d

dt
φi(t)

〉
+ c.c.

}

+
∑

i

{
〈φi(t)|

(
d

dt
V̂ext(t)

)
|φi(t)〉

}

+ d

dt
EHXC[n(t)]. (4)

The last term requires some attention

d

dt
EHXC[n(t)] =

∫
∂EHXC[n(t)]

∂n(r)

∂n(r, t)
∂t

dr

=
∫

V adiab
HXC [n(t)](r)

∂n(r, t)
∂t

dr

=
∑

i

{
〈φi(t)|V̂ adiab

HXC [n(t)]

∣∣∣∣ d

dt
φi(t)

〉
+ c.c.

}
.

(5)
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Inserting Eq. (5) into Eq. (4) and collecting terms to re-
cover the KS Hamiltonian, we obtain

d

dt
E(t) =

∑
i

{
〈φi(t)|Ĥ [n(t)]

∣∣∣∣ d

dt
φi(t)

〉
+ c.c.

}

+
∫

n(r, t)
∂Vext(r, t)

∂t
dr. (6)

Using the equations of motion (1), for a Hermitian KS
Hamiltonian, it becomes clear that

〈φi(t)|Ĥ [n(t)]

∣∣∣∣ d

dt
φi(t)

〉
+ c.c.

= i¯〈φi(t)|Ĥ [n(t)]Ĥ [n(t)]|φi(t)〉 + c.c.

= 0 (7)

and, hence, the sum of the first terms in Eq. (6) is zero.21 The
last term in Eq. (6) also vanishes if the external potential does
not depend on the time t, as it is the case for the systems con-
sidered here. Energy conservation is an important property of
the TDKS equations since it can be used as a test of both sta-
bility and numerical accuracy of the numerical integration of
the TDKS equations. This will be used as a test criterion in
Secs. IV and V, in absence of exact non-trivial reference so-
lutions to the TDKS problem in general.

C. Plane-wave expansion of the wave functions

For the numerical treatment of the TDKS equations, the
KS orbitals need to be expanded in a finite number of basis
functions. In this work, a supercell approach with periodic
boundary conditions is used and, hence, the Bloch theorem22

can be exploited, leading to the expression

φi(r, t) = ψnk(r, t) = 1√
�

eik·runk(r, t) (8)

for the wave functions, where unk(r, t) is a lattice-periodic
function and � is the volume of the supercell. The indices n
and k label the eigenstates and the k vectors in the Brillouin
zone, respectively. Expanding the wave functions into plane
waves according to

ψnk(r, t) = 1√
�

∑
G

C(G, t)ei(k+G)·r, (9)

where G belongs to the reciprocal lattice, has been quite
successful in terms of numerical accuracy, convergence, and
computational scalability. This basis set is orthonormal and
provides an unbiased and spatially homogeneous expan-
sion that converges numerically by systematically increasing
merely a single parameter, the cutoff energy Ecut = G2

cut/2.
Ecut corresponds to the maximum kinetic energy of all plane
waves in the calculation.

Since the basis itself is time independent, all the time de-
pendence is carried by the plane-wave coefficients C(G, t) of
the expansion. This implies that the spatial partial derivatives
of the wave functions are readily available in the reciprocal
space. It is also useful to note that the plane-wave basis is
independent of the nuclei positions, which makes the frame-

work convenient for first-principles molecular dynamics ap-
proaches, thanks to the absence of basis set superposition er-
rors and Pulay forces.23

D. Computational details

Treating the singularity of the Coulomb potential in
the close vicinity of the nuclei is computationally expen-
sive in a plane-wave basis since a very large number of
basis functions is needed for converged calculations. The
pseudopotential approach is used to circumvent this issue by
replacing the core electrons with non-local effective poten-
tials, which are derived by inverting the atomic KS equation
(see, e.g., Ref. 24). In the present work, Hamann-Schlüter-
Chiang norm-conserving pseudopotentials with a modifica-
tion by Vanderbilt25 are used within the Kleinman-Bylander
approach.26

The local-density approximation as parametrized by
Perdew and Zunger27 is used within the adiabatic approxima-
tion for the exchange-correlation potential in the calculations.
Due to the size of the supercells in this work, it is sufficient to
use only the � point to sample the Brillouin zone even though
the implementation is capable of taking k points into account.

III. PROPAGATION SCHEMES

A. General considerations

For a non-interacting time-dependent Schrödinger equa-
tion (TDSE) there exists a plethora of numerical propagators
to choose from. Their key properties such as (semi-exact)
norm conservation and (semi-exact) energy conservation as
well as other numerical properties including different condi-
tions of stability (with respect to the time/space discretization)
are well known.28 In spite of the similarities, for the case of
the TDKS equations (1), in combination with a plane-wave
expansion of the wave functions, the situation is complicated
by several factors:

First, unlike the TDSE, the TDKS equations are non-
linear, and the inverse of the KS operator is only available
through numerical iterative solution.

Second, conditional or unconditional stability of a time
propagation algorithm in the case of the TDSE is not a guar-
antee of stability for the TDKS case; due to the self-consistent
nature of the TDKS, there are feedback mechanisms that
can worsen the stability criterion, or even make a method
completely unstable when applied to the TDKS. This is a
well-known phenomenon observed in studies of the nonlinear
extensions of the Schrödinger equation29, 30 and will be dis-
cussed for the second-order finite-differences scheme below.

Third, within the plane-wave framework, implicit meth-
ods are not suitable due to the dimension of the linear op-
erator (number of plane waves squared) that has to be in-
verted. The number of plane waves in the present calculations
is over 33 000, and is routinely much larger for many applica-
tions. Therefore, for example, the Crank-Nicholson (Cayley)
scheme,31 although it has been successfully used in reduced
basis set local-orbital methods (see, e.g., Refs. 12 and 32), is
not a desirable option for large-scale simulations (thousands
of electrons) within a plane-wave implementation because a
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linear solver has to be used for inverting the large matrix at ev-
ery step.33 It is certainly possible to have such implicit meth-
ods implemented for a plane-wave basis, however, the accu-
racy goal of the iterative solver becomes an extra parameter in
itself, to be controlled to ensure stability. Therefore, implicit
methods are beyond the scope of this work.

Fourth, within the plane-wave formalism it is tempting
to use approximations to the linear time-evolution operator
instead of approximating the differential equation by finite
differences. Moreover, split-operator Trotter-like expansions
exploit the fact that the kinetic energy (the local potential)
part of the Hamiltonian is diagonal in reciprocal (real)
space. Since these techniques can potentially benefit from
very large time steps,10 they have been traditionally favored
in the community.9 However, these approaches cannot be
implemented straightforwardly without further algorithmic
considerations because one needs to deal with the non-local
part of the pseudopotential. Furthermore, the Hamiltonian
operator is not a constant and not known a priori, since it
depends on the electronic states at later times (see, e.g., the
Magnus expansion34 and the railway method10). Hence, in
this work we restrict ourselves to finite-difference approxima-
tions which have a controlled order in the error. Nevertheless,
the time steps that are used in this work, are comparable to
the ones used in other approaches.14, 35–39

Note also that all propagators investigated in this work
rely on the application of the entire Hamiltonian to the wave
function and on updating the Hamiltonian correspondingly;
therefore, no particular structure of the Hamiltonian is as-
sumed or exploited for the propagation. Consequently, for the
integration of the TDKS equations we can directly take advan-
tage of some of the existing DFT architecture as implemented
in the Qbox code (or similar plane-wave codes). This code is
optimized for scalability and features highly optimized rou-
tines for solving the regular KS equations on a large number
of processors.40

B. First-order Euler scheme

The Euler approach is the simplest propagation scheme
in which the wave functions at the time t + �t are obtained
from the one at time t according to

|φ(t + �t)〉 = |φ(t)〉 − i

¯
�t Ĥ [n] |φ(t)〉 . (10)

For this scheme, only the static Hamiltonian at t = 0 (i.e.,
Ĥ [n(t = 0) = n0]) is used to drive the time propagation in
Eq. (10). While for any real, i.e., physical problem, the self-
consistent Hamiltonian that depends on time through the den-
sity n(t) has to be used, we explore numerical properties of
the propagation given by Eq. (10) using only the fixed Hamil-
tonian in this work. This is due to the significant numerical
instability issues that we observed for this scheme and dis-
cuss below. The computational load associated with solving
Eq. (10) arises from a single application of the Hamiltonian
to the wave functions. The error in this scheme is O(�t), i.e.,
first-order in �t.

C. Second-order finite differences

Within the second-order finite-difference scheme (here-
after called the SOD scheme) more information than in the
Euler scheme is used to calculate the wave functions at
t + �t from the ones at both t and t − �t according to

|φ(t + �t)〉 = |φ(t − �t)〉 − 2
i

¯
�t Ĥ [n] |φ(t)〉 . (11)

SOD is slightly more sophisticated than the Euler ap-
proach, and the error is O(�t2). As in the case of the Euler
scheme, the Hamiltonian has to be applied only once for each
time step, but two copies of the wave functions (at t and
t − �t) need to be stored in memory for the calculation of the
new wave functions. The SOD case presents an interesting
comparison since this scheme is known to be conditionally
stable with semi-exact conservation of energy and orthogo-
nality for the non-self-consistent (TDSE) problem.

For the propagation according to Eq. (11), three different
levels of the self-consistency of the Hamiltonian28 are com-
pared, again, in order to study the different numerical prop-
erties for three cases. In the fully self-consistent approach
(sc-SOD), the Hamiltonian is updated at each time step (cf.
Eq. (11)), as it is required when a physical problem is to be
studied. However, in practical applications where the elec-
tronic wave functions are spread out in the cell, the density (as
an average of electronic wave functions squared) often washes
out the individual high-frequency fluctuations of the wave
functions, giving in practice a quantity that has a lower fre-
quency. Hence, we consider two additional cases: (i) Within
the non-self-consistent propagation (nsc-SOD) the Hamilto-
nian is kept fixed at Ĥ [n0], as described for the Euler scheme
above. (ii) In the semi-self-consistent propagation (sc100-
SOD) the Hamiltonian is updated every 100 time steps, i.e.,
self-consistency is recovered every 100 steps. By assessing
the numerical stability and accuracy associated with the non-
linearity for the sc100-SOD we elucidate whether this scheme
can be a useful tool for cases where the density fluctuations
are of a lower frequency compared to individual electron
dynamics.

D. Second-order Runge-Kutta scheme

Another second-order approach tested in this work is the
second-order Runge-Kutta31 scheme (called RK2 in the fol-
lowing). In this case, the wave functions at t + �t are com-
puted according to

|k1〉 = − i

¯
�t Ĥ [nφ(t)] |φ(t)〉,

|k2〉 = − i

¯
�t Ĥ [nφ(t)+0.5·k1 ] |φ(t) + 0.5 · k1〉, (12)

|φ(t + �t)〉 = |φ(t) + k2〉.

As with the SOD scheme, the integration error scales
as O(�t2). The higher sophistication of this approach with
respect to the Euler scheme is achieved by invoking mul-
tiple evaluations of the Hamiltonian and deriving the up-
dated wave functions from these intermediate steps.31 In or-
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der to express how the density needs to be computed for
the different intermediate steps, we use the notation nφ(t) in
Eqs. (12) and (13). While the RK2 method allows for larger
time steps for the integration of the TDKS equations, it also
comes with higher computational cost due to the additional
updates of the Hamiltonian and its application to the respec-
tive wave functions. Furthermore, we emphasize that, un-
like in Secs. III B and III C, the Hamiltonian is updated at
each time step for the time propagation schemes described in
Secs. III D and III E.

E. Fourth-order Runge-Kutta scheme

The fourth-order Runge-Kutta scheme (RK4) is a step be-
yond the RK2 method, further improved by including more
intermediate evaluations of the Hamiltonian.31 In this case,
the propagation is done according to

|k1〉 = − i

¯
�t Ĥ [nφ(t)] |φ(t)〉,

|k2〉 = − i

¯
�t Ĥ [nφ(t)+0.5·k1 ] |φ(t) + 0.5 · k1〉,

|k3〉 = − i

¯
�t Ĥ [nφ(t)+0.5·k2 ] |φ(t) + 0.5 · k2〉,

|k4〉 = − i

¯
�t Ĥ [nφ(t)+k3 ] |φ(t) + k3〉,

|φ(t + �t)〉 =
∣∣∣∣φ(t) + 1

6
k1 + 1

3
k2 + 1

3
k3 + 1

6
k4

〉
.

(13)

The RK4 scheme clearly shows the highest computa-
tional cost, as it requires four evaluations and updates of the
Hamiltonian. On the other hand, for a given local error tol-
erance, the time step can be chosen much larger because the
integration error only scales as O(�t4). In practice, other re-
strictive considerations, like stability, have to be taken into
account to choose the time step for each method, as discussed
below.

IV. TEST CASE I: THE ISOLATED NA ATOM

As a test of the propagators introduced in Sec. III, the
time-evolution of a single Na atom in a cubic supercell
(a = 7.94 Å) is studied (cf. Fig. 1). The size of this super-
cell, i.e., the distance between mirror images of the Na atom,
has been chosen such that the total energy does not change
more than 55 meV upon a further increase of the cell size.

FIG. 1. Cubic unit cell containing a single Na atom (small circle). To prepare
a non-equilibrium initial condition, the Na 3s wave function (represented by
the yellow isosurface) has been shifted by (0.32, 0.32, 0.32) Å, see (a). In (b)
and (c), two snapshots of the RK4 simulation are shown.

FIG. 2. Total energy Etot (in eV) of the Na atom (at t = 0 fs, the 3s wave func-
tion was shifted by (0.32, 0.32, 0.32) Å from its equilibrium position in real
space) as a function of time t (in fs). In (a), the Euler scheme (black solid line,
�t = 0.069 as) and the sc100-SOD second-order finite-difference scheme
(red solid line, �t = 0.069 as) are compared to the Runge-Kutta propaga-
tors (blue solid line). The second-order (�t = 0.069 as) and the fourth-order
(�t = 0.691 as) Runge-Kutta scheme yield the same trajectory for the times
shown in (a). In (b), the fully self-consistent second-order finite-difference
method (green solid line) is compared to the sc100-SOD (red solid line) and
the non-self-consistent (red dotted line) one for �t = 0.069 as.

The plane-wave cutoff energy was chosen to be 70 Ry which
ensures that the total energy is converged to about 20 meV.
For this system, the ground-state density is calculated within
DFT and, subsequently, the 3s wave function is shifted by
(0.32, 0.32, 0.32) Å in real space in order to prepare a non-
equilibrium initial condition for the time propagation.

A. Numerical stability and conservation of energy

The numerical stability is one of the most important cri-
teria when solving the TDKS equations with the explicit inte-
grators introduced above. Since the total energy is a conserved
quantity, as discussed in Sec. II B, it is used as a measure of
the stability of the propagation.

In Fig. 2, the time evolution of the total energy is shown
for the different schemes introduced in Sec. III. A time step
of �t = 0.069 as is used for all schemes except for the RK4
one; in this case a ten times larger time step, �t = 0.69 as,
was used. We note that this is on the same order of magnitude
as the time steps of one11 or a few35 attoseconds reported for
real-space and real-time codes.

From Fig. 2(a) it can be seen that the Euler scheme, even
though the Hamiltonian is kept fixed during the propagation,
is highly unstable. The total energy diverges very quickly af-
ter a decrease from its original value. In the same figure, the
results obtained using the RK2 propagator are in agreement
with the RK4 propagator and it is found that they conserve
the total energy within 2.72 meV for a propagation time of
up to 11 fs. Even though both of the two propagation schemes
appear to fulfill the numerical stability, the RK2 scheme even-
tually becomes unstable for a longer propagation as discussed
below. For the RK4 approach, also the conservation of the
norm of the unshifted wave functions was checked; we found
the (monotonous) decrease of the norm to be smaller than
10−7/fs during the propagation. In addition, Fig. 2(a) shows
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that the sc100-SOD scheme is able to maintain the stability to
a certain point: Up until ≈8.5 fs the total energy is conserved
fairly well and is only slightly smaller than the initial value.
However, beyond that point the deviation grows very quickly
and the total energy again diverges.

For comparison, the different levels of self-consistency in
the SOD scheme as shown in Fig. 2(b) are analyzed. The fig-
ure clearly shows that the sc-SOD scheme is numerically un-
stable even for a propagation time of less than 0.1 fs. Keeping
the Hamiltonian fixed for some number of integration steps
(e.g., 100 in this work) improves the numerical stability of the
algorithm, leading to a stable propagation for a much longer
time [cf. Fig. 2(a)]. The nsc-SOD scheme is found to be con-
ditionally stable, i.e., there is a �t small enough such that the
propagation remains stable for all times t. However, keeping
the Hamiltonian fixed is unphysical for practical applications
within RT-TDDFT, as mentioned earlier. Therefore, the SOD
schemes are an example of an explicit method that is well-
behaved in the non-self-consistent case (or, for instance, the
linear Schrödinger equation) but becomes unconditionally un-
stable for the integration of the self-consistent TDKS. This
illustrates the difficulty of having to deal with the nonlinear
Hamiltonian of the TDKS formalism when the time propaga-
tion is performed.

For investigating further details, Fig. 3 shows the numeri-
cal stability of the RK2 (the sc100-SOD second-order) propa-
gation schemes up to 35 fs (11 fs) as calculated using different
time steps �t. For both propagators, the propagation becomes
expeditiously more stable when smaller time steps are used.
In addition, from comparing Figs. 3(a) and 3(b) it is found
that the (fully self-consistent) RK2 scheme is much more sta-
ble than the sc100-SOD when the same time step is chosen.
The total energy deviations in the stable regime are also much
smaller for the RK2 case.

As mentioned earlier, the nsc-SOD and the RK4 propa-
gator are found to be conditionally stable in this work, i.e.,
they can be used for propagation of arbitrary duration as long
as the time step �t is chosen to be small enough. Plotting the
critical time step (for which the propagation is numerically

FIG. 3. Total energy Etot (in eV) of the Na atom as a function of time t (in fs).
The curves in (a) result from the sc100-SOD second-order finite-difference
scheme and the ones in (b) from the second-order Runge-Kutta scheme. Time
steps of �t = 0.069 as (black solid lines), �t = 0.104 as (red solid lines), and
�t = 0.138 as (green solid lines) were used.

FIG. 4. Time steps �t (in as) for which the non-self-consistent second-order
finite-difference scheme (a) or the fourth-order Runge-Kutta scheme (b) are
stable (green triangles pointing up) or unstable (red triangles pointing down),
depending on the respective plane-wave cutoff energy Ecut (in Ry) used.

found to remain stable) versus the plane-wave cutoff energy
Ecut in Fig. 4 indicates an inverse proportionality of the critical
�t vs. Ecut. Furthermore, it can be seen that the critical time
step used in the RK4 scheme can be roughly three times as
large as the one used in the nsc-SOD for a given Ecut. We em-
phasize, however, that the nsc-SOD scheme is not physically
meaningful for propagating the TDKS equation even though
it is numerically robust.

B. Evolution of the system

In order to illustrate the evolution of the system during
the propagation, the total energy, being a conserved quantity,
does not provide helpful insights. Instead, the sum of the ex-
pectation values,

∑
i 〈φi(t)|Ĥ [n]|φi(t)〉, as shown in Fig. 5

FIG. 5. Sum of the expectation values
∑

i

〈
φi (t)

∣∣Ĥ [n]
∣∣φi (t)

〉
(in eV) of all

valence wave functions i of the Na atom (at t = 0 fs the 3s wave function was
shifted by (0.32, 0.32, 0.32) Å from its equilibrium position in real space) as a
function of time t (in fs). In (a) the Euler scheme (black solid line, �t = 0.069
as) and the sc100-SOD second-order finite-difference scheme (red solid line,
�t = 0.069 as) are compared to the Runge-Kutta propagators (blue solid
line). The second-order (�t = 0.069 as) and the fourth-order (�t = 0.691
as) Runge-Kutta scheme yield the same trajectory for the times shown in (a).
In (b) the fully self-consistent second-order finite-difference method (green
solid line) is compared to the sc100-SOD (red solid line) and the non-self-
consistent (red dotted line) one for �t = 0.069 as.
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is used as a time-dependent quantity that provides qualitative
information of the energy spectrum of the wave functions. As
expected, the results from the Euler scheme are not useful due
to the immediate instability of this propagation scheme. For t
up to ≈13 fs, it can be seen in Fig. 5(a) that the RK2 and RK4
propagations agree with each other exactly (therefore only
RK4 is shown) even though they are calculated using differ-
ent �t. They show pronounced oscillations with a period of
approximately 1.5 fs. Additionally, contributions from other
higher frequencies become visible from the fine structure of
the curves. These features derive from the fact that the wave
function that was shifted at t = 0 starts to oscillate around the
(fixed) position of the nucleus, as expected. Also other wave
functions start to oscillate through the self-consistent poten-
tial (which depends on all occupied wave functions) in the
TDKS Hamiltonian.

We note that test calculations have shown that varying the
plane-wave cutoff energy between 50 Ry and 80 Ry does not
significantly impact the time evolution of the system with the
change in the sum of the expectation values remaining smaller
than 8 meV.

Comparing the results of the two Runge-Kutta propaga-
tors [cf. Fig. 5(a)] to the behavior obtained using the sc100-
SOD propagation scheme shows a close similarity for small
times t. However, this agreement becomes worse for larger
times, i.e., when the sc100-SOD becomes increasingly un-
stable. In accordance with the discussion of the total energy,
Fig. 5(b) points out that the sc-SOD becomes unstable and,
hence, does not yield meaningful results for the expectation-
value sum for t > 0.1 fs. Even though the nsc-SOD is con-
ditionally stable, Fig. 5(b) shows that the expectation-value
sum does not change during the propagation because of the
non-self-consistent nature of the propagation.

Figure 6 shows the long-term stability of the propagation
using the RK4 scheme; the total energy for the Na atom is
plotted for a total propagation time of 2.2 ps. It can be seen
that the total energy is well conserved during the propagation
with a deviation of less than 30 meV during the 2.2 ps. As dis-
cussed above, the integration error in the RK4 scheme scales
as O(�t4). More specifically, it has been found numerically
that the total energy conservation (per unit time) can be im-
proved by a factor of 27.8 when the time step is reduced by a
half.

FIG. 6. Total energy Etot (in eV) of the Na atom (at t = 0 fs the 3s wave
function was shifted by (0.32, 0.32, 0.32) Å from its equilibrium position in
real space) as a function of time t (in fs). The results have been obtained using
the RK4 propagator and �t = 0.691 as.

FIG. 7. The 64-atom unit cell of MgO (Mg atoms red circles, O atoms
blue circles) containing a single Na atom (black circle) on an oxygen lattice
position.

V. TEST CASE II: NA ATOM EMBEDDED IN MGO

Having established that the RK4 method is suitable
for our implementation of RT-TDDFT within a plane-wave
pseudopotential formalism, we now show that the scheme is
suitable for investigating large, complex systems and, in par-
ticular, bulk systems with periodic boundary conditions. This
aspect is a major improvement over most existing implemen-
tations of RT-TDDFT. We applied our implementation to a
bulk system, consisting of a 64-atom supercell of crystalline
MgO with one of the O atoms replaced by a Na atom. This
corresponds to 32 Mg atoms, 31 O atoms, and 1 Na atom with
a total of 449 valence electrons in the calculation (cf. Fig. 7).
After obtaining the ground state of the system, the 3s wave
function of the Na atom is shifted by (0.032, 0.032, 0.032) Å
in real space to obtain a non-equilibrium initial condition for
the time propagation.

The evolution of the Na:MgO system is shown in Fig. 8
using again the sum of the expectation values as an example
for a quantity of interest. The sc100-SOD and the RK2 are

FIG. 8. Sum of the expectation values
∑

i

〈
φi (t)

∣∣Ĥ [n]
∣∣φi (t)

〉
(in eV) of all

valence wave functions in the Na:MgO 64-atom supercell (at t = 0 fs the
Na-induced level within the MgO gap was shifted by (0.032, 0.032, 0.032)
Å from its equilibrium position in real space) as a function of time t (in
fs). The sc100-SOD second-order finite-difference scheme (red solid line,
�t = 0.069 as) is compared to the second-order (green solid line, �t
= 0.069 as) and the fourth-order (blue solid line, �t = 0.691 as) Runge-Kutta
scheme.
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FIG. 9. Total energy Etot (in eV) of the Na:MgO 64-atom supercell (at
t = 0 fs the Na-induced level within the MgO gap was shifted by (0.032,
0.032, 0.032) Å from its equilibrium position in real space) as a function of
time t (in fs). The results have been obtained using the fourth-order Runge-
Kutta propagator and �t = 0.691 as.

also shown for comparison to the RK4 propagation scheme.
The intrinsic inaccuracy of the sc100-SOD scheme is evident
in the figure as this propagator is applied to a complex system
such as Na:MgO: the oscillations are much too large and the
long time stability is worse, as discussed earlier.

To test the long-term stability of the RK4 propagation
also for this complex system, we plotted the total energy
for a total propagation time of 118 fs (�t = 0.691 as) in
Fig. 9. The total energy is well-conserved during the prop-
agation; the deviation remains on the order of 2.7 eV during
118 fs. Note that this error corresponds to merely 0.006% of
the total energy of the system, hence, the magnitude of the
deviation per electron is on the same order as in the case of
a single Na atom. Furthermore, as discussed above it can be
reduced by a factor of ≈28 by using a half of the time step
size.

A. Parallel scaling

Finally, it is important to analyze the scaling of the RT-
TDDFT implementation presented in this work. In Fig. 10,
the time required to perform one step of real time propagation
using the RK4 method is shown for the different numbers of
processor cores the calculation is run on. As discussed above,
the RK4 method requires four updates of the Hamiltonian and
four evaluations of Ĥ [nφ(t)] |φ(t)〉 per time step. In Fig. 10, we
also compare the time required to perform one step of steepest
descent (SD), which requires one evaluation of the Hamilto-

FIG. 10. The number of steps that can be performed within 1 s wall time is
plotted versus the number of processing cores used in the calculation for the
Na:MgO 64-atom supercell. The steepest descent algorithm (black curve) is
compared to the RK4 propagation (red curve).

nian per step but also one orthogonalization of the wave func-
tions. Even though there are more sophisticated schemes than
SD that can be used for converging to the ground-state Hamil-
tonian (e.g., conjugate-gradient, preconditioning, etc.), these
schemes all involve orthogonalization of the wave functions.
We chose the SD algorithm merely as a representative case of
these schemes, since the orthogonalization of the wave func-
tions does not scale well with the number of processing cores
and, hence, represents a severe bottleneck.

Initially, for small numbers of processor cores, the SD
scheme is roughly a factor of four faster since only one eval-
uation of the Hamiltonian is required. However, the orthog-
onalization bottleneck of the SD scheme becomes obvious
in Fig. 10 for more than 200 cores, where the scalability
of the SD scheme is significantly reduced. In contrast, the
RK4 propagator scales very well (close to linearly) up to
at least 1536 cores (1 step/s), benefiting directly from the
highly parallelized routines in the Qbox code that can be ex-
ploited for this explicit integration scheme. The absence of
an orthogonalization bottleneck in the RK4 scheme leads to
highly parallel calculations in addition to the fact that having
an explicit integrator scheme allows us to take advantage of
the highly parallel routines for applying Hamiltonian on the
wave functions. Indeed, several authors have noted that un-
der suitable conditions a coupled electron-nuclear dynamics
within TDDFT could outperform Born-Oppenheimer molec-
ular dynamics.14, 41 In this work, we show an instance of these
conditions, namely, large numbers of electrons and a highly
parallel implementation.

VI. CONCLUSIONS

We find that the 4th order Runge-Kutta scheme is a condi-
tionally stable and well-balanced general purpose propagator
for the TDKS equations when implemented within the plane-
wave pseudopotential formalism. Several other integrators
such as the Euler scheme, the second-order finite-differences
scheme, and the second-order Runge-Kutta scheme were also
studied in this work. The Euler scheme was found to be
highly unstable. Relaxing the self-consistency requirement of
the nonlinear Hamiltonian in the TDKS improves the sta-
bility of the second-order finite differences scheme. This
observation indicates that integrators that are designed for
time-dependent Schrödinger equations are not necessarily
suitable for integrating TDKS equations. In limited instances,
the second-order Runge-Kutta scheme can be an efficient
alternative propagator (with smaller computational expense
than the fourth-order version) for cases where the time step
needs to be very small and the total propagation time required
is not long. This can be the case for certain applications in-
volving very fast external perturbations where the physics of
the problem requires a very fine time resolution (e.g., under a
high frequency external potential).

The explicit propagators allow for a better scalability
with respect to the number of computing cores compared to
typical ground-state or Born-Oppenheimer methods, making
them suitable for large-scale simulations. We show in this
work the precise regime in which a single real time step prop-
agation can outperform a BO method step. The improvement
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results from the fact that the time-propagation schemes do not
require the orthogonalization of the propagated wave func-
tions, which is a known bottleneck for the scalability.17 Fur-
thermore, the explicit integrators do not assume a particu-
lar form of the potential (including the pseudopotential and
exchange-correlation potential) and they can directly benefit
from existing highly parallel routines developed for the Born-
Oppenheimer calculations.

The present implementation of real-time TDDFT in the
plane-wave pseudopotential formalism using the explicit in-
tegrators provides an ideal framework for performing large-
scale first-principles Ehrenfest dynamics simulations, which
will be discussed in a separate future work with extensive
applications.
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