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Abstract: 

Advancement in high-performance computing allows us to calculate properties of 
increasingly complex materials with unprecedented accuracy. At the same time, in order to 
take full advantage of modern leadership-class supercomputers, the calculations need to scale 
well on hundreds of thousands of processing cores. We demonstrate such high scalability of 
our recently developed implementation of Ehrenfest non-adiabatic electron-ion dynamics up 
to 1 million floating-point processing units on two different leadership-class computing 
architectures. As a representative example of material properties that derive from quantum 
dynamics of electrons, we demonstrate the accurate calculation of electronic stopping power, 
which characterizes the rate of energy transfer from a high-energy particle to electrons in 
materials. We discuss the specific case of crystalline gold with a hydrogen atom as the high-
energy particle, and we illustrate detailed scientific insights that can be obtained from the 
quantum dynamics simulation at electronic structure level. 

Keywords: Quantum electron dynamics, High-performance computing, Computational 
Materials Science 

Introduction 
Over the past half-century, computation has become an indispensable tool in science and 
engineering. On the road to exascale, supercomputers with multi-peta-FLOP per second 
(PFlop/s) performance have become increasingly available. The continued advancement of 
high-performance computational capabilities allows us to solve mathematical problems of 
increasing complexity with greater accuracy, providing detailed scientific understanding and 
insights for technological innovation. At the same time, the increasing scale and complexity 
of modern supercomputers have exposed the need for a greater emphasis on development 
of algorithms and methodologies that are tailored for massively-parallel multi-core machines 
in order to fully take advantage of these capabilities. Computational materials research has 
traditionally benefited greatly from high-performance computing, and increased effort on 
addressing this issue is becoming crucial for the continued advancement of the field. 



In order to systematically design new materials or even to improve existing ones, obtaining 
structure-function-property relationships with predictive accuracy is essential. Oftentimes 
this requires a deep understanding of material properties that emerge from many-body 
interactions of electrons and ions (i.e. atoms with electrons missing) that constitute the 
material. At the microscopic scale of electrons, quantum mechanical effects play a central 
role, and the mathematical description of many-body interactions becomes highly non-trivial. 
Furthermore, many challenging problems in materials research call for predictive calculations 
without the need for adjustable empirical parameters from experiments (i.e. first-principles 
approaches). High-performance computing is indispensable for tackling this challenging 
goal. 

The behavior of quantum-mechanical particles such as electrons is governed by the many-
body Schrödinger equation, a multi-dimensional differential equation. Because a direct 
solution of this equation has exponential complexity [1], it is computationally intractable for 
all but the smallest and simplest molecules even on today’s supercomputers. Scientists thus 
rely on physical and numerical approximations for computing electronic structure to predict 
material properties. Naturally, the utility of quantum-mechanical calculations depends on the 
accuracy of these underlying approximations that are involved in first-principles 
computational approaches. Recent advances of quantum-mechanical calculations are indeed 
closely tied to the emergence of high-performance computers in the last few decades, and 
they allow us to employ better approximations which have become highly complicated for 
numerical calculations. 

Among various quantum mechanical computational methods for obtaining electronic 
structure, density functional theory (DFT) has and continues to play a central role in 
computational materials research [1,2]. Enabled by efficient implementations of DFT 
methods, “high-throughput” computational searches for optimal materials are becoming 
popular for various technological applications such as batteries and photo-electrochemical 
cells, for instance, within the Materials Project [3]. Computational prediction of optical and 
electronic properties of materials also advanced greatly in recent years with many-body 
perturbation theory and quantum Monte Carlo methodologies, especially with increasing 
research effort for solar energy conversion [4]. As for calculating time-dependent properties, 
dynamical behavior of complex materials and condensed phase systems can be simulated 
today with first-principles molecular dynamics approaches [5]. 

In first-principles molecular dynamics approaches, the quantum dynamics of electrons is 
coarse-grained out to reduce the computational cost. The electronic evolution is designed to 
simply follow the movement of ions instantaneously (known as the adiabatic Born-
Oppenheimer approximation [6]). Unfortunately, in this approximation the physics 
associated with the quantum dynamics of electrons is neglected and various interesting 
properties are therefore not accessible. Electron dynamics is indeed responsible for many 
novel phenomena that are essential for a wide range of technological applications—ranging 
from photocatalytic cells to radiation shielding in space. Consequently, an accurate 
description of electron dynamics through time-dependent quantum-mechanical theory is an 
important challenge in computational materials physics and chemistry today. While modern 
high-performance supercomputers help us tackle this great challenge, their massively parallel, 
hybrid-paradigm (traditional central-processing units, graphic chips, many integrated cores) 
architectures presents new challenges for numerical simulations at the same time. Theoretical 



and algorithmic methods need to be developed accordingly in order for electronic-structure 
theory to take full advantage of current and future supercomputers. 

In this paper, we discuss our recent effort on developing first-principles computational 
methodology to simulate the quantum dynamics of electrons in materials on massively 
parallel supercomputers. We illustrate the approach with a prototypical example of 
combined electron-ion dynamics for calculating electronic stopping, i.e. the non-equilibrium 
energy transfer from high-energy particles (such as atoms and ions) to the electrons in 
materials as the projectile particle traverses through it. We demonstrate the computational 
capability to make quantitative predictions of electronic stopping that are needed for various 
technological developments such as nuclear reactor materials design and radiation hardening 
of microelectronics in space. 

Theoretical and Numerical Approach 
The Runge-Gross theorem [7] allows us to circumvent a prohibitively expensive task of 
solving the 3N-dimensional, time-dependent (TD) Schrödinger equation for N electrons. 
After mapping the problem onto a system of non-interacting Kohn-Sham (KS) particles, a 
set of coupled non-linear partial differential equations, known as TD-KS equations, has to 
be solved for the time evolution of the quantum system. TD-KS equations read 

𝑖ℏ !
!"
𝜙! 𝒓, 𝑡 = − !

!
𝛻! + 𝑉!"# 𝒓, 𝑡 + 𝑉! 𝑛 𝒓, 𝑡 𝜙!(𝒓, 𝑡)                                     (1) 

where r  is the 3-dimensional spatial coordinate, t is time, and Vext(r ,t) is the external potential 
that describes the Coulomb interaction of electrons and ions. The term Vs[n](r ,t) represents 

the sum of electrostatic (Hartree) electron-electron interaction, !(𝒓!,!)
𝒓!𝒓!

d𝒓′, and quantum-

mechanical exchange-correlation (XC) potential, !!!"[!]
!"(𝒓,!)

. The terms between the brackets in 

Eq. (1) are collectively called the “Kohn-Sham Hamiltonian”, and it drives the time 
evolution of the electronic system. Importantly, this Hamiltonian depends on the electronic 
density n(r ,t), a function of three spatial and one temporal variables, that is given as the sum 
of TD-KS wave functions, n(r ,t)= 𝑓! 𝜙! 𝒓, 𝑡 !  

! , weighed by their respective occupation fi. 
The exact XC potential, albeit unknown, is defined through a functional derivative and an 
approximation is used in practice for the XC functional. By numerically integrating the TD-
KS equations (1) in time, we obtain the quantum dynamics of electrons from first principles. 

In order to combine the quantum dynamics of electrons with the movement of classical 
ions, we rely on Ehrenfest dynamics approach [8]. In this framework, forces on classical ions 
are obtained from the total energy functional of the time-dependent electronic density. This 
results in the following equation of motion for the ions: 

𝑀!
!!𝑹!
!!!

= −𝛻!!𝐸 𝑹! ,𝑛(𝒓, 𝑡)                      (2) 

where MI and RI are the mass and position of the I-th ion. 

The most time-consuming part of employing Ehrenfest dynamics as described above is the 
numerical integration of TD-KS equations. The numerical approach has to be accurate, 



stable, and efficient, and importantly it must perform well on highly parallelized computers 
with hundreds of thousands of processing cores. Consequently, a suitable numerical 
integrator must be balanced in terms of integration step size, numerical stability, accuracy, 
and scalability for massive parallelization. We have recently shown that a generalized 4th 
order Runge-Kutta explicit integration scheme is highly suitable when combined with a 
plane-wave expansion of TD-KS wave functions [9], and we also find it convenient for 
computations with large numbers of processors, as demonstrated in the next section. The 
numerical integration is conditionally stable, and an integration step size on the order of one 
atto-second can be used for the plane-wave basis set sizes that are typically needed for 
investigating materials. The plane-wave expansion allows for a systematic convergence of the 
basis set and also an efficient computation of key quantities (e.g. kinetic energy) in reciprocal 
space using highly optimized fast Fourier transform routines. Here, we demonstrate that the 
new algorithm [9] can be efficiently implemented. 

Computational Details 
The Qbox code [10] is an efficient, scalable implementation of DFT using a plane-wave 
expansion of the KS wave functions, 𝜙! 𝒓, 𝑡 = !

!
𝐶!(𝑮, 𝑡)𝑒!!𝑮∙𝒓𝑮 . Written in C++, 

Qbox uses MPI to carry out communication between compute nodes and a mix of OpenMP 
and threaded kernels to maximize usage of on-node resources. For this work, we used the 
Qb@ll branch of the code [10] currently developed and maintained at Lawrence Livermore 
National Laboratory (LLNL). 

A typical quantum dynamics simulation consists of many individual time steps and the same 
operations are performed for each step. Hence, we investigate the scaling behavior for a 
representative 1600-atom gold system (27,200 electrons) at Γ point in Brillouin zone 
integration by showing the wall time for one individual step in Fig. 1. We note that a 256 
atom super cell is sufficient to make predictions agreeing with the experimental data for this 
specific system (see below). The benchmark, however, shows that the code and the existing 
high-performance computing machines are capable of treating much more complex 
problems. Two different computational architectures are compared: Sequoia, the 20 PFlop/s 
IBM Blue Gene/Q supercomputer at LLNL having theoretical peak performance of 204.8 
GF/node, and Blue Waters, the 13.3 PFlop/s Cray Blue Waters supercomputer at the 
National Centre for Supercomputing Applications (NCSA) having theoretical peak 
performance of 313.6 GF/node for XE node. On both Sequoia and Blue Waters each node 
has 16 floating-point processing units and this is what we use as reference for the scaling in 
Fig. 1. The timings for successive steps (maximum over all processes) using a given number 
of floating-point units are similar to within less than 1%. 

The calculations on the Blue Gene/Q system used parallel linear algebra as implemented in 
the SCALAPACK library and one-dimensional Fourier transforms are computed with either 
the FFTW or vendor-supplied libraries such as IBM’s ESSL library. For the calculations on 
the Cray system, parallel linear algebra is handled by SCALAPACK as included in the 
vendor-optimized Cray LIBSCI library. On the Cray platform, one-dimensional Fourier 
transforms are computed with the FFTW library. Computations were performed on Cray 
XE6 nodes (i.e. no GPUs were used for any of the calculations reported here). 



 

Figure 1: Scaling of the TD-KS calculation for 1600 atom gold (27,200 electrons) on the IBM Blue 
Gene/Q Sequoia machine (red circles) and Cray Blue Waters machine (blue diamonds). Maximum 
performance is 1.5 and 0.8 PFlop/s respectively. The inset shows the super cell that this simulation is based 
on. 

In this work we adopt the memory management and data distribution schemes of the Qb@ll 
code: The expansion coefficients, Ci(G ,t), of the KS electronic wave functions are 
distributed on a logical 2D process grid, with electronic states distributed across process 
rows and plane-wave basis functions distributed across process columns (see Fig. 2). The 
TD-KS equations are well-suited for such a distribution, as nearly all communication can be 
restricted to sub-communicator collectives within a process row or column. Four additional 
sets of the wave function are stored in memory for each integration step in the fourth-order 
Runge-Kutta integration scheme we have implemented [9]. Note that once the ground state 
of the quantum system is computed (e.g. initial condition for the time-propagation), TD-KS 
equation does not require re-orthogonalization of the wave functions or subspace 
diagonalization every iteration like traditional Born-Oppenheimer dynamics. Our TD-KS 
implementation is therefore free of the global communication bottlenecks that could limit 
the strong scalability of standard DFT calculations. 



 

Figure 2: A schematic illustrating representation of the Kohn-Sham electronic wave functions on two-
dimensional logical process grid: Expansion coefficients Ci(G,t) for plane waves are ordered in terms of the 
state index, i and the expansion index G. Red numbers indicate MPI process numbers. 

Modern high-performance computing often requires keen awareness of the underlying 
hardware: For example, on Blue Gene/Q, the theoretical peak performance assumes full 
usage of the four-way single-instruction-multiple-data (SIMD) vector units and hardware 
threads. If one does not take advantage of these features, the maximum performance of the 
machine drops from 20 PFlop/s to 2.5 PFlop/s. For Qbox, optimized single-node kernels 
were found to be essential in minimizing the time to solution, most notably matrix 
multiplication and one-dimensional fast Fourier transforms. On Sequoia we were able to 
achieve up to 35% of peak (on 32,768 cores) and about 11% on 1 million cores. On Blue 
Waters’ XE nodes this run achieved 33.1% of peak (not counting GPUs) on 32,768 cores 
and 20.8% on 196,608 cores. 

Test calculations on Sequoia provided insight into the timings and scaling of the three main 
communication operations (“MPI_Reduce”, “MPI_Allreduce”, and “MPI_Alltoallv”). The 
total time spent on reduction operations depends only weakly on the number of cores since 
these are typically carried out across rows on the logical process grid, and the actual amount 
of data being moved does not change significantly. The timing slightly decreases, depending 
on how spread out the data is. The “alltoallv” operations, on the other hand, are carried out 
within process columns as part of the Fourier transforms to compute the charge density. For 
those operations, the number of electronic states on each process column decreases linearly 
with the increasing number of nodes, leading to excellent scaling. 

At larger task counts, the strong scalability is limited not by communication costs, but by the 
lack of parallelization over terms that depend on data that is duplicated across tasks e.g. ionic 
positions. At one million cores, over half of the total time is spent in these heretofore 
insignificant calculations. The dominance of these terms is a consequence of the 
unprecedented scalability of the rest of the code. Additional development is currently 
underway to further distribute the calculations of these terms and achieve greater scalability. 
Nevertheless, Fig. 1 shows that we obtain excellent scaling up to very large numbers of cores 
on both of these leadership-class machines and, in addition, that we can apply this approach 
to complex materials with thousands of atoms and tens of thousands of electrons. 



Scientific Application: Electronic Stopping 

 

Figure 3: Time evolution of the difference of the time-dependent electronic charge density and the density at 
t=0 for a hydrogen atom moving through gold at a velocity of v=2 a.u. The snap shots are taken at t=0.02 
a.u. (a and d), t=0.42 a.u. (b and e), and t=0.82 a.u. (c and f). The top three images show a channeling 
projectile and the bottom three ones an off-channeling projectile. Red color indicates n(t)<n(0) and blue 
indicates n(t)>n(0). 

We now demonstrate an application of the Ehrenfest dynamics implementation for 
computing an important material property that is governed by coupled electron-ion 
dynamics and, hence, explicitly depends on the quantum dynamics of electrons; Electronic 
stopping characterizes the rate of non-equilibrium energy transfer from a projectile 
(e.g. atoms, ions, etc.) to the electronic system of a target material as the projectile moves 
through the material. The energy transfer results in excitations of the electrons in the 
material and this process strongly depends on charge and velocity of the projectile, the 
composition of the target material, and also on the trajectory of the projectile through the 
material. Here we demonstrate the computational capability for quantitatively calculating 
electronic stopping for the prototypical case of a fast hydrogen (effectively a proton in bulk 
gold) penetrating crystalline gold. 

Detailed knowledge of electronic stopping such as its velocity and geometrical dependence is 
highly important because it describes the interaction of high-energy projectiles with materials 
under various extreme conditions. Quantitative understanding is essential, for example, in 
predicting structural damages in fusion/fission reactor materials as they face significant 
bombardment by high-energy protons and other particle radiation. Radiation shielding of 
microelectronics from high-energy protons in space and the interaction of high-energy 
protons with biological molecules as in radiation therapy are other important areas of 
materials research where detailed characterization of electronic stopping is crucial. 



 

Figure 4:  Spatially-averaged electronic stopping S as a function of the projectile velocity. The blue (solid) 
line represents averaged experimental data from the SRIM database [11]. The black (square symbols) and 
the red (diamond symbols) lines are for channeling and for off-channeling projectile, respectively. 

The projectile deposits energy into the electronic system as it moves through the material at 
a given (constant) velocity. Our simulations provide us with the energy E (defined here as 
the total energy minus the kinetic energy of all ions) and the electronic charge density at each 
step of the time integration of the TD-KS equations. Electronic stopping is defined as the 
increase of E as a function of projectile displacement x, 

𝑆 𝑥 = 𝑑𝐸(𝑥)/𝑑𝑥.                   (3) 

This stopping power S(x) has the dimension of a force and can also be understood as a 
“drag force” acting on the projectile [12]. 

In order to compute the electronic stopping of gold with a hydrogen atom as the projectile, 
we use a simulation cell of 256 gold atoms with periodic boundary conditions, and only the Γ 
point is used for Brillouin zone integrations. More than 840,000 plane waves are used in the 
expansion of each KS wave function (130 Rydberg for the plane wave energy cutoff), and 
norm-conserving pseudopotentials (with 5p, 5d, and 6s electrons of gold as valence electrons) 
are used to describe the electron-ion interaction. We use the adiabatic local-density 
approximation to describe exchange and correlation. The integration time step of Δ𝑡=0.24 
atto-seconds is used for accurate integration of the time-dependent KS equations for all the 
projectile velocities. 

The influence of the stopping geometry is quantified by comparing results for a projectile 
along a channeling trajectory (an ideal [001] channel is used in this work) to the results 
computed for a projectile along a randomly-oriented off-channeling path as in most 
experiments. The latter is approximated by placing the direction of the projectile’s velocity 
vector to be incommensurate with the lattice vectors of the bulk crystalline gold. The two 
stopping geometries are shown in Fig. 3. In addition, Fig. 3 also shows the time evolution of 



the difference of the time-dependent electronic charge density (i.e. as the projectile passes 
through gold) and the equilibrium electronic density at t=0. The density changes induced in 
this process are clearly visible. We observe that the density oscillation lags mostly behind the 
projectile and its magnitude depends strongly on the velocity. The oscillation remains rather 
localized in the orthogonal direction of the projectile trajectory. These insights into the 
electronic stopping process at microscopic level, obtained without any fitting parameter to 
experiment, help us understand the initial mechanism of material damages induced by high-
energy projectiles. 

As an example of quantitative characterization, Fig. 4 compares our computed results for the 
velocity dependence of averaged electronic stopping to experimental data from the SRIM 
database that summarizes a large number of experimentally measured results [11]. We are 
able to accurately calculate the electronic stopping over a wide range of projectile velocities 
in very good agreement with experimental measurements. In addition, we can obtain detail 
atomistic insights into the influence of the projectile trajectories, and we find that the 
channeling trajectory results in less energy transfer per unit distance for the projectile 
velocities higher than 1.0 atomic units. We note that each data point in Fig. 4 requires 
between 400 and 24000 time steps, depending on the projectile velocity. Accurate 
calculations of the stopping power for materials such as gold is computationally quite 
expensive because a large number of (semi-) core electrons need to be taken into account. In 
addition to the large computational cost associated with obtaining accurate averages for the 
stopping power, the increased memory requirement as discussed in the previous section 
makes it necessary to perform these calculations on highly-parallelized computers. 

Conclusions and Perspective 
Computational materials research has greatly benefited from recent advancements in high-
performance computing. Coupled with new developments in electronic structure theory, 
various technologically important material properties can now be computed from first 
principles without empirical parameters from experiments. At the same time, computing 
non-adiabatic properties of materials that derive from the quantum dynamics of electrons 
remains a significant challenge, and leadership-class supercomputers allow us to meet this 
challenge for many complex materials of great technological importance. 

In this article, we described our recent effort in developing a new highly scalable first-
principles approach that can explicitly model electron dynamics in complex materials by 
efficiently utilizing modern supercomputers. We presented performance data of our 
implementation on two leadership-class computing architectures and we obtained scientific 
results for the electronic stopping power of crystalline gold with hydrogen atom. We 
envision that collaborative interactions between physical science and computer science 
communities will be increasingly important for computational materials research in the 
future. 
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