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The quasiparticle band structures and fundamental energy gaps of the rock-salt (rs), zinc-blende (zb), and
wurtzite (wz) polymorphs of CaO and AlN are calculated within the G0W0 approximation on top of a self-
consistent solution of the generalized Kohn–Sham equation with the hybrid functional HSE03. Based on these
reliable electronic structures, the dielectric functions of rs-CaO, zb-AlN, and wz-AlN including excitonic effects
are obtained from the solution of the Bethe–Salpeter equation. The peaks and structures in the absorption spectra
are analyzed in terms of critical points in the joint band structure and the joint density of states. We find that some
features of the optical absorption can be clearly assigned to bound excitonic states located at M0 or M1 critical
points, while others are merely due to a large joint density of states.
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I. INTRODUCTION

For about 12 years, optical absorption spectra of simple
bulk semiconductors and insulators could be calculated from
first principles taking the full quasiparticle (QP) band structure
and the excitonic and local-field effects into account.1–3

The approach is based on many-body perturbation theory:4

The macroscopic optical polarization function is obtained
from the solution of a Bethe–Salpeter equation (BSE) to
account for the electron-hole pair interactions,5–7 while the
many-body influence on the single-particle level is described
by solving the QP equation4,8–10 with an exchange-correlation
(XC) self-energy in Hedin’s GW approximation.11 Mean-
while, the theory has been generalized to spin-polarized
systems.12 Nowadays, optical spectra including excitonic
effects can be calculated not only for bulk semiconductors and
insulators1–3 but also for solid surfaces,13–15 molecules,16,17

and nanocrystals.18–20 Moreover, the accuracy of the method
has been improved significantly so that even exciton binding
energies of only a few millielectron volts can be computed
or predicted.21–24 However, open questions remain, e.g., with
respect to the dynamics of the screening and the contribution
of the lattice polarizability.25

The influence of many-body effects in bulk systems
becomes manifest in some general features of the optical ab-
sorption spectra:1,2,12 (i) Going from the independent-particle
approximation (IPA) to the independent-QP approximation26

(IQPA), the optically excited noninteracting electron-hole
pairs are replaced by noninteracting quasi-electron–quasi-hole
pairs, thus accounting for the interaction of the individual
electrons or holes with the gas of valence electrons. This
usually leads to a remarkable blueshift of the spectrum toward
higher photon energies in accordance with the opening of the
QP gap. Thereby, the modifications of the overall line shape
are normally small (see, e.g., Ref. 27). (ii) The inclusion of
the screened electron-hole attraction via the BSE approach
leads to a redshift of the IQPA absorption spectrum apart from

the absorption edge itself. It is accompanied by a sometimes
drastic redistribution of oscillator strength from higher to lower
photon energies. On the other hand, the local-field effects are of
minor influence for many bulk semiconductors and insulators.
(iii) In many systems, e.g., direct semiconductors or insulators,
the absorption edge is significantly modified by the formation
of bound excitonic states.21–23,25 They are characterized by
absorption peaks within the fundamental QP gap and, hence,
finite binding energies. Their oscillator strengths are usually
increased due to the Coulomb enhancement. In addition, the
spectral strength of the scattering states above the fundamental
gap is also enhanced, which can be described by the Sommer-
feld factor in the Wannier–Mott model.28

In the early days of semiconductor physics, enormous
progress in the understanding of the electronic structures was
achieved by a simplifying identification procedure: Peaks and
shoulders in the imaginary part of the frequency-dependent
dielectric function were attributed to van Hove singularities of
type M0, M1, M2, or M3 in the joint density of states (JDOS),
which later became the standard textbook interpretation28–30

of optical spectra. Van Hove singularities occur at so-called
critical points kcr in the Brillouin zone (BZ) where the gradient
of the difference between conduction (c) and valence (v)
QP bands ε

QP
ck − ε

QP
vk vanishes. It has been argued that these

energy differences ε
QP
ckcr

− ε
QP
vkcr

are measured by means of
many modulation spectroscopy techniques.29 However, the
experience theoreticians gained over the last years concerning
the influence of excitonic effects on the absorption spectra
renders the simple interpretation of spectral features solely by
means of van Hove singularities questionable. State-of-the-art
ab initio many-body calculations ask at least for a more careful
interpretation of the spectra in terms of QP band structures, on
the one hand, and excitonic effects, on the other hand.31 Now,
the accuracy reached in the computation of band structures and
Coulomb interaction matrix elements allows such a careful
analysis.
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In the present paper, we aim for a detailed understanding
of the optical absorption spectra of CaO and AlN and a
critical discussion of the origin of occurring absorption peaks.
Both materials are strongly ionic with high-charge asymmetry
coefficients g: Following the chemical trend of CaSe and
CaS,32 a value of g > 0.906 can be estimated for CaO. For
AlN in the zinc-blende (zb) structure, g = 0.794 has been
found.32 The anions are first-row elements with nearly equal
and small covalent radii rO = 0.73 Å and rN = 0.75 Å.33 The
covalent radii of the cations, on the other hand, differ a lot
from each other, i.e., rCa = 1.74 Å and rAl = 1.18 Å.33 As a
consequence,34 CaO and AlN crystallize in different crystal
structures with different atomic coordination. While CaO
usually exhibits a sixfold coordination in the cubic rock-salt
(rs) structure,35 AlN is fourfold coordinated. Its equilibrium
geometry is the hexagonal wurtzite (wz) structure,35 but
deposited AlN layers also show the cubic zb structure.36

For purpose of comparison, we investigate both compounds,
CaO and AlN, within the rs, zb, and wz crystal structures.
Additionally, CaO is studied in the hexagonal Bk-BN structure.

The paper is organized as follows. In Sec. II, we briefly
compile the applied theoretical methods and specify the
computational details. In Sec. III, the ground-state properties
and the QP band structures are presented. The results for the
optical absorption spectra are given in Sec. IV. The influence
of the excitonic effects and the validity of the critical-point
analysis are discussed in detail. Section V deals with the
excitons near the band edges. Finally, a short summary is
given in Sec. VI.

II. THEORETICAL AND COMPUTATIONAL METHODS

The ground-state properties of the crystal polymorphs
of CaO and AlN are calculated within density functional
theory37,38 (DFT) as implemented in the Vienna Ab-initio
Simulation Package39 (VASP). The interaction of the valence
electrons (Ca 3s, Ca 3p, Ca 4s, O 2s, and O 2p for CaO or
Al 3s, Al 3p, N 2s, and N 2p in the case of AlN) with the cores
is described by means of the projector-augmented wave (PAW)
method.40 The wave functions are expanded in plane-wave
basis sets with cutoff energies of 350 eV. For the ground-state
calculations, the generalized-gradient approximation (GGA)
in the parametrization of Perdew, Burke, and Ernzerhof41

(PBE) is used. The face-centered cubic (fcc) and the hexagonal
BZs are sampled by �-centered meshes with 8 × 8 × 8 or
8 × 8 × 6 k points, respectively. For unit cells with internal
degrees of freedom, the positions of the ions are relaxed
until the Hellmann–Feynman forces are below 5 meV/Å. The
minimum of the total energy with respect to the volume is
obtained by means of a fit to the Murnaghan equation of state.42

For the calculation of the cohesive energies, we have subtracted
the spin-polarized ground-state energies of the free atoms.

The QP bands are determined by a perturbative solution
of the QP equation8 with the XC self-energy in the GW

approximation.8,11 The iteration starts with a self-consistent
solution of a QP equation, sometimes also called a general-
ized Kohn–Sham (KS) equation, with a self-energy derived
from the nonlocal HSE03 hybrid functional43 (zeroth order).
Subsequently, the GW corrections are calculated in first-order
perturbation theory, i.e., within the so-called one-shot G0W0

approach9,10,44 (for details of the implementation see Ref. 45).
In addition, we present QP eigenvalues calculated in the G0W0

approach on top of the PBE ground-state electronic structures.
For the computation of the QP band structures, 8 × 8 × 8 k
points and 150 bands were used for the cubic polymorphs. In
the case of the hexagonal structures, 8 × 8 × 6 k points and
300 bands were necessary for both materials to converge the
band energies with an accuracy of 0.1 eV.

The macroscopic dielectric function ε(ω) is obtained by
solving the BSE for spin-singlet excitations including the
attractive screened electron-hole interaction and an exchange-
like term accounting for the local-field effects.6,7 To this end,
the BSE is transformed into an eigenvalue problem for an
effective two-particle Hamiltonian:∑

c′v′k′
Ĥ (cvk,c′v′k′) A�(c′v′k′) = E� A�(cvk). (1)

The eigenvalues E� represent the electron-hole pair excitation
energies which are labeled by the quantum numbers �. The
eigenvectors A�(cvk) are the electron-hole pair amplitudes or
mixing coefficients of optical single-particle transitions. The
excitonic electron-hole pair Hamiltonian1,4 reads

Ĥ (cvk,c′v′k′) = (
ε

QP
ck − ε

QP
vk

)
δcc′ δvv′ δkk′

−
∫

dr
∫

dr′ ϕ∗
ck(r) ϕc′k′(r)

×W (r,r′) ϕvk(r′) ϕ∗
v′k′(r′)

+ 2
∫

dr
∫

dr′ ϕ∗
ck(r) ϕvk(r)

× v̄(r − r′) ϕc′k′(r′) ϕ∗
v′k′(r′). (2)

The first term describes the noninteracting quasi-electron–
quasi-hole pairs. The second term accounts for the screened
electron-hole Coulomb attraction with the statically screened
Coulomb potential W (r,r′). The third contribution, governed
by the nonsingular part of the bare Coulomb interaction
v̄(r − r′), represents the electron-hole exchange or crystal
local-field effects. The matrix elements of the potentials are
calculated by means of the single-particle wave functions
ϕnk(r), with the band index n running over valence or
conduction bands. With the solution of Eq. (1), the frequency-
dependent macroscopic dielectric function can be written as

ε(q̂,ω) = 1 + 8πe2

V

∑
�

∣∣∣∣∣
∑
cvk

Mq̂(cvk) A∗
�(cvk)

∣∣∣∣∣
2

×
[

1

E� − h̄(ω + iη)
+ 1

E� + h̄(ω + iη)

]
, (3)

with q̂ being the unit vector in the direction of light incidence
and η the pair damping constant. The crystal volume is given
by V . The optical transition matrix elements are evaluated in
the longitudinal approach,46

Mq̂(cvk) = lim
q→0

1

|q|
∫

dr ϕ∗
ck(r) eiqr ϕvk−q(r). (4)

To save computational work load, an analytical expression,47

which depends on the electronic static dielectric constant
ε(ω = 0) = ε∞ and the average valence-electron density, is
employed to describe the screening of the electron-hole
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attraction in W . For the dielectric constants, values of ε∞ =
3.89 (rs-CaO), ε∞ = 4.75 (zb-AlN), and ε∞ = 4.66 (wz-AlN,
average over Cartesian directions) have been obtained within
the IPA using PBE eigenvalues and single-particle wave
functions.

The investigation of the fine structure of optical absorption
spectra, especially near the absorption edge and for low-
energy optical transitions, requires finer k-point samplings
than those necessary for the ground-state calculations. For
the fcc structures, we apply a �-centered 18 × 18 × 18 mesh,
while in the hexagonal case a �-centered 14 × 14 × 12 mesh
is used. Further, a sufficiently large number of conduction
bands has to be included in the calculations to describe the
electron-hole pair interaction properly. The number of empty
states is limited by introducing a cutoff energy for the electron-
hole single-particle transitions (without QP corrections) that
contribute to the excitonic Hamiltonian of Eq. (2). The cutoff
of 20 eV applied here is sufficient to converge the structures
occurring in the imaginary part of the dielectric function in the
spectral range discussed throughout this paper.

The matrix elements of the excitonic Hamiltonian have
been evaluated by means of DFT-PBE wave functions. Since
the usage of PBE+G0W0 QP eigenvalues still leads to a gap
underestimation (see Sec. III B), HSE03+G0W0 eigenvalues
are employed instead of PBE+G0W0 eigenvalues on the main
diagonal of the Hamiltonian. It has been carefully checked that
no change of band ordering occurs when going from PBE to
HSE03. For even finer meshes up to 40 × 40 × 40 k points
in the case of AlN (see Sec. IV B), also the calculation of QP
shifts in the G0W0 approach becomes unaffordable. However,
the comparison of HSE03+G0W0 and HSE03 eigenvalues
(see Sec. III B) indicates that the application of a scissors
operator,9 i.e., a constant shift 
QP of the conduction bands
toward higher energies, gives good agreement of the HSE03+
G0W0 and HSE03+
QP band structures.

The huge size of the excitonic Hamiltonian matrix of Eq. (2)
prohibits a direct diagonalization. For this reason, the dielectric
functions are computed by means of an efficient time-evolution
scheme.14,27 Compared with a direct diagonalization, this
approach scales as O(N2) instead of O(N3), with N being
the number of pair states, i.e., the rank of the Hamiltonian.
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FIG. 1. (Color online) Total energy versus volume per formula
unit for various polymorphs of (a) CaO and (b) AlN.

For detailed studies of bound states of band-edge excitons, we
apply a recently developed scheme.23 It is based on an iterative
diagonalization to find the lowest eigenvalues of the excitonic
Hamiltonian.

III. GEOMETRIES AND QUASIPARTICLE
BAND STRUCTURES

A. Structural and energetic properties

The ground-state properties of CaO and AlN are studied
for the B1 rs structure with space group Fm3̄m (O5

h), the
B3 zb structure with space group F 4̄3m (T 2

d ), and the B4 wz

structure with space group P 63mc (C4
6v). The energy-volume

dependences are shown in Fig. 1. They clearly indicate that
rs-CaO and wz-AlN are the equilibrium phases under ambient
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FIG. 2. (Color online) QP band structures and DOSs for (a) zb-,
(b) id. wz-, (c) h-, and (d) rs-CaO calculated in different approaches.
The starting electronic structure is given by solid lines (PBE in the
left panels or HSE03 in the middle panels). The red circles denote
the band energies with QP corrections. To guide the eye, the circles
are connected by straight dotted lines. The yellow area indicates the
fundamental gap region. The DOSs per formula unit in the right panels
are given in the HSE03 (black solid lines) and HSE03+G0W0 (red
shaded regions) approaches with a Lorentzian broadening of 0.2 eV.
The VBM is used as energy zero.

075218-3



A. RIEFER et al. PHYSICAL REVIEW B 84, 075218 (2011)

TABLE I. Lattice parameters a (fcc crystal structures) or a, c, and u (hexagonal crystal structures) and cohesive energies Ecoh for the CaO
and AlN polymorphs. Experimental values are given in parentheses.

CaO AlN

Parameter zb wz (id.) h rs zb wz rs

a (Å) 5.257 3.714 4.015 4.844 (4.811a) 4.404 (4.373b) 3.131 (3.111a) 4.071 (3.938c)
c (Å) 6.065 4.822 5.020 (4.979a)
u 0.375 0.500 0.381
Ecoh (eV) 10.57 10.64 10.80 10.93 (11.0d) 11.41 11.45 (11.52e) 11.11

aFrom Ref. 35.
bFrom Ref. 48.
cFrom Ref. 49.
dFrom Ref. 50.
eFrom Ref. 51.

conditions (see also Ref. 35). If no additional constraints are
applied in the case of CaO, an initial configuration in the ideal
(id.) wz phase relaxes into the hexagonal Bk-BN structure with
space group P 63/mmc (D4

6h), which features an additional
mirror plane. A similar behavior can be observed for MgO.52,53

The Bk-BN crystal structure will be denoted as h-CaO in the
following. In Fig. 1, results for both the ideal wz structure
and h-CaO are given. The low-density phases wz-CaO and
zb-CaO with fourfold coordination are significantly higher in
energy compared with h-CaO. For AlN, the total energy of
the zb structure is only 40 meV above the energy of the wz

structure, whereas the rs structure represents a high-pressure
phase in agreement with experimental findings.49

The structural parameters and cohesive energies are listed
in Table I for all crystal structures. Because of the treatment of
XC within the GGA, the lattice constants are overestimated by
0.6%–0.8% compared with available experimental results. The
comparably large deviation in the case of rs-AlN may be due to
the fact that it is more difficult to define the lattice parameters
for a nonequilibrium high-pressure phase in experiment. The
cohesive energies are in excellent agreement with measured
values. Altogether, we state that the DFT-GGA geometries
provide a reliable starting point for the computation of band
structures and optical properties.

B. Band structures and densities of states

In Figs. 2 and 3, we show the band structures of CaO and
AlN in several crystal structures calculated by means of the
PBE and the HSE03 XC functionals with and without G0W0

QP corrections. In addition, the DOSs are depicted. For both
materials, the sixfold coordinated rs structure gives rise to
an indirect fundamental gap with the valence-band maximum
(VBM) at the � point and the conduction-band minimum
(CBM) at the X point of the BZ. In the wz geometries, both
compounds are direct semiconductors with the fundamental
gap located at �. For the zb crystals, however, an indirect gap
appears close to the direct one with a somewhat smaller energy.
The VBM in zb-CaO is located at the X point (within the PBE
or HSE03 approach the energies of the highest valence band
at the W and the X point are the same), while the CBM is still
at �. For zb-AlN, the BZ location of the band extrema is just
the reverse.

The gap values are listed in Table II. The PBE gaps
are smaller than those obtained with the HSE03 functional,
since the latter already includes important parts of the XC
self-energy. The GW corrections mainly depend on the starting
electronic structure. For the equilibrium polymorphs, the QP
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FIG. 3. (Color online) QP band structures and DOSs for (a) zb-,
(b) wz-, and (c) rs-AlN calculated in different approaches. The
starting electronic structure is given by solid lines (PBE in the left
panels or HSE03 in the middle panels). The red circles denote the
band energies with QP corrections. To guide the eye, the circles
are connected by straight dotted lines. The yellow area indicates the
fundamental gap region. The DOSs per formula unit in the right panels
are given in the HSE03 (black solid lines) and HSE03+G0W0 (red
shaded regions) approaches with a Lorentzian broadening of 0.2 eV.
The VBM is used as energy zero.
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TABLE II. Fundamental indirect and direct gaps (in eV) calculated within four different approaches. Experimental values are given for
comparison.

Gap PBE PBE+G0W0 HSE03 HSE03+G0W0 Exp.

zb-CaO X → � 3.25 4.53 4.39 5.19
W → � 3.25 4.55 4.39 5.20
� → � 3.83 5.08 4.96 5.75

wz-CaO (id.) M → � 3.32 4.63 4.46 5.29
� → � 3.64 4.93 4.78 5.59

h-CaO � → � 3.11 4.40 4.23 5.00
rs-CaO � → X 3.64 5.88 5.04 6.47

� → � 4.54 5.98 5.80 6.63 7.09a

X → X 4.02 6.35 5.46 6.96

zb-AlN � → X 3.32 4.62 4.32 5.15 5.34b,5.3c

� → � 3.99 5.51 5.11 6.06 5.93c

wz-AlN � → � 4.05 5.58 5.16 6.13 6.11d

rs-AlN � → X 4.42 6.05 5.57 6.53
� → � 5.41 7.09 6.67 7.62

aFrom Ref. 54. Thermoreflectance measurements at 85 K.
bFrom Ref. 55. Ellipsometry measurements.
cFrom Ref. 56. Ellipsometry measurements at room temperature.
dFrom Ref. 57. Photoluminescence measured at 10 K.

shifts of the direct gaps at the � point amount to 1.4 eV
(CaO) and 1.5 eV (AlN) starting from PBE eigenvalues or
0.8 eV (CaO) and 1.0 eV (AlN) on top of the HSE03 energies.
These differences explain why the HSE03 starting point is
more appropriate for a perturbational treatment of the QP
equation (see also Ref. 44). Going along with the smaller gaps
in the corresponding zeroth approximation, the PBE+G0W0

gaps prove to be smaller than the HSE03+G0W0 gap values.
The HSE03+G0W0 gaps are much closer to the experimental
results than the PBE+G0W0 values (see Table II) in agreement
with the findings for many other semiconductors.10,44,58

The calculated direct gap of rs-CaO is slightly underes-
timated compared with measured values (see Table II). The
deviation can partially be attributed to the use of PBE instead
of experimental lattice constants. Yamasaki and Fujiwara59

computed an indirect band gap of 3.65 eV in the local-density
approximation (LDA) which proves to be very close to our
PBE result. However, they obtained a �-X gap of 6.64 eV
in LDA+G0W0 which is well above our PBE+G0W0 gap
of 5.88 eV and even above our HSE03+G0W0 gap of
6.47 eV. The reason may be the coarse k-point sampling used
in Ref. 59.

For zb-AlN, an indirect band gap of 5.34 eV55 or 5.3 eV56

is deduced from the weak onset of the optical absorption in
ellipsometry experiments. Our calculated value of 5.15 eV for
the �-X gap is only somewhat smaller. The deviation might
be due to the use of the PBE lattice constant which is slightly
larger than the experimental value (see Table I). Thus, the
calculated band gap can be expected to underestimate the
true fundamental gap slightly. Further, Röppischer et al.56

state that their value should be considered as an upper
limit for the indirect band gap. The computed direct gaps
for zb- and wz-AlN are in excellent agreement with recent
experimental data derived from ellipsometry measurements56

or photoluminescence spectra.57

LDA+G0W0 calculations predict an indirect band gap of
4.9 eV (Ref. 60) or 5.45 eV (Ref. 25) and a direct gap of 6.0 eV
(Ref. 60) or 6.72 eV (Ref. 25) for zb-AlN. The gap of wz-AlN
is stated to be 5.8 eV (Ref. 60) or 6.8 eV (Ref. 25). Both
Rubio et al.60 and Bechstedt et al.25 use model approaches
to describe the wave-vector and frequency dependence of
the dielectric function to reduce the computational work
load. Deviations in the resulting gaps are most probably due
to differences in the details of the implementation and the
usage of experimental lattice constants and norm-conserving
pseudopotentials60 or LDA lattice parameters and ultrasoft
pseudopotentials.25 However, in the calculations presented
here, the full wave-vector and frequency dependence of the di-
electric matrix are taken into account.45 In the same spirit as the
present work, Rinke et al.61 used an improved starting point,
in their case the exact-exchange optimized-effective-potential
method with LDA correlation, for the G0W0 calculation. They
obtained 5.63 eV (indirect gap of zb-AlN), 6.53 eV (direct
gap of zb-AlN), and 6.47 eV (direct gap of wz-AlN) and,
hence, a slight overestimation of the experimental findings
(see Table II). In the light of both the recent theoretical and
experimental results, it can be concluded that the so-called
recommended value of 4.9 eV62 for the indirect gap of zb-AlN
has to be revised.

IV. OPTICAL ABSORPTION SPECTRA, CRITICAL
POINTS, AND EXCITONS

In this section, we discuss the optical absorption spectra
with and without excitonic effects for the polymorphs rs-CaO
(Fig. 4), zb-AlN (Fig. 6), and wz-AlN (Fig. 9) that have
been grown up to now. The spectra clearly show the most
important influences of the excitonic effects on the optical
absorption: (i) There is a clear tendency for a redistribution
of oscillator strength from higher to lower photon energies
due to the Coulomb attraction. (ii) Bound excitonic states, i.e.,
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pair excitations with finite binding energies, at the absorption
edge (see Fig. 9) or even within the interband continuum (see
Fig. 4), can occur.

Aiming for a critical-point analysis of optical absorption
spectra, one has to keep in mind that the JDOS is not
necessarily large at a critical point. For instance, the JDOS
is zero at the M0 point, which marks the absorption onset
and rises proportionally to the square root of the energy for
parabolic bands thereafter. Consequently, no distinct peaks
that can be identified with van Hove singularities are visible
in absorption spectra calculated within the IPA or IQPA,
which are merely JDOSs multiplied with the optical transition
matrix elements. Only the inclusion of excitonic effects in the
calculation may lead to pronounced peaks near critical-point
energies. The bound excitonic states with large oscillator
strengths which are located in the vicinity of M0 points
(Ref. 63) and the line-shape modifications at M1 points
(Refs. 64 and 65) act as a kind of marker which allows us
to identify the approximate energetic position of the critical
point. However, the excitonic peaks are shifted by their binding
energy with respect to the energy of the corresponding van
Hove singularity. The identification of M2 and M3 points in
the spectra is by far more difficult. In these cases, the inclusion
of the attractive Coulomb interaction leads to a reduction of
spectral strength and smears out structures in the JDOS.64

A. rs-CaO

In Fig. 4 the absorption spectra of rs-CaO are shown both
with and without local-field and excitonic effects. We find
qualitative agreement of the overall line shape between our
calculation in the IQPA, where the HSE03+G0W0 eigenvalues
have been employed, and an IPA spectrum67 using DFT-LDA.
The main difference results from the neglect of QP corrections
in Ref. 67, which lead to a nearly rigid blueshift of roughly
3 eV. However, Fig. 4 shows that the inclusion of excitonic
effects is essential.
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FIG. 4. (Color online) Imaginary part of the dielectric function of
rs-CaO. The spectrum in the IQPA (red dashed line) and the solution
of the BSE including excitonic and local-field effects (red solid line)
are shown. Experimental data from Ref. 66 (black solid line) are
given for comparison. A Lorentzian broadening of η = 0.1 eV has
been used for the calculated curves.

The experimental absorption spectrum of rs-CaO66 (Fig. 4)
shows three distinct peaks, A, B, and C, at photon energies of
h̄ω = 6.8, 7.1, and 11.4 eV. Additional broad features appear
at about h̄ω = 10.0 and 16.9 eV. The calculated spectrum with
excitonic effects possesses a similar line shape. The theoretical
peak positions at h̄ω = 6.71 and 11.44 eV agree very well
with the experimentally observed positions of the A and C

peaks. The same holds for the broad features near h̄ω = 10.1,
12.5, and 16.6 eV. Only the B peak cannot be identified
unambiguously. The structure near 12.5 eV forms a shoulder
in the experimental spectrum. Also the absolute values of
the imaginary part of the dielectric function agree well, in
particular taking into consideration that they are comparably
small.

Whited and Walker66 identify the three most distinct
absorption peaks A, B, and C with excitons. The A peak
at 6.71 eV is not below the direct QP gap of 6.63 eV at �,
and, hence cannot be a band-edge exciton. Phonon-assisted
transitions related to the indirect gap at 6.47 eV do not
play a role, since the theoretical approach presented here is
restricted to vertical optical transitions. A refined analysis of
the A peak is given in Sec. V A, where it is shown that it
belongs to a Wannier–Mott-like exciton originating mainly
from the lowest-energy transition at the X point, which is a
M0 critical point (see Fig. 5). The strength of peak A seems
to be somewhat underestimated. The reason for this is that
the height of isolated peaks in the computed spectra strongly
depends on the applied lifetime broadening. For the spectrum
shown in Fig. 4, a broadening of η = 0.1 eV has been used for
all spectral regions. Even smaller lifetime broadenings would
require a denser k-point sampling, especially for spectral
regions with a plateau-like line shape. The resolution of the
experimental reflectance data ranges from 3.5 meV at low
energies to 250 meV at high energies.66 Therefore, the A peak
proves to be sharper in the measured spectrum. In addition,
the experimental curve has been extracted from reflectance
spectra using a Kramers–Kronig inversion, which introduces
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FIG. 5. (Color online) Joint band structure and JDOS for rs-CaO
in the HSE03+G0W0 approach. The interband-transition energies
from all valence bands v to the lowest conduction bands c = 1, . . . ,6
are shown. The calculated positions for the QP gap and the A and the
C excitons are indicated.
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TABLE III. Optical transition energies Ei , E′
i , and E′′

i (in eV)
from the highest valence to the first three conduction bands at the
high-symmetry points of the fcc BZ for rs-CaO. The energies are
taken from HSE03+G0W0 calculations (see Fig. 2).

Point Label i Ei E′
i E′′

i

� 0 6.63 9.77 11.75
L 1 11.79 11.82 13.75
X 2 6.96 12.27 13.75
W 3 10.87 13.74 15.28
K 4 9.06 12.43 13.45

significant errors at the low- and high-frequency end points of
the data.66

In our calculated curves, the faint peak B cannot be
resolved. This may be an issue of k-point convergence. The
weakly varying amplitude of the absorption spectrum above
the A peak asks for a finer k-point sampling. On the other hand,
the JDOS (see Fig. 5) does not exhibit any critical points in the
relevant energy range. Experiments68 relate the weak feature
B to the �-point exciton based on the occurrence of spin-orbit
and exciton-phonon split-off peaks. However, Table III shows
that the direct gap at the BZ center is smaller than the one
at the X point, which renders this interpretation implausible
in the light of the calculations performed within this paper. But
the X and the � gap are so close in energy that an interchange
of the energetic positions due to strain in the sample may be
possible.

To investigate the origin of the C peak, the joint band
structure, i.e., the interband-energy differences ε

QP
ck − ε

QP
vk (in

analogy to the JDOS), is plotted in Fig. 5 to simplify the
identification of critical points. Whited and Walker66 support
the hypothesis that the C exciton stems from transitions
between the third-highest valence band and the lowest con-
duction band at the X point. Based on the QP band structures
calculated here (see Fig. 2), this view cannot be confirmed:
The corresponding transition energy of 8.12 eV (see Fig. 5)
is too small. Taking into account a finite binding energy for
the exciton, the transitions E′′

0 (at the � point) and E1/E
′
1 (at

the L point) come into question (see Fig. 5 and Table III). On
the other hand, E1 and E′

1 are M3 critical points, and, thus,
no excitonic peaks should occur.29 This renders E′′

0 the only
remaining alternative. The argumentation can be strengthened
by the observation that E′′

0 is a M0 critical point with large
oscillator strength.

Moreover, Fig. 5 suggests that the broad feature around
10 eV might be traced back to transitions from the threefold
degenerate VBM at � to the threefold degenerate second con-
duction band. The corresponding “joint bands” are comparably
flat over wide areas of the BZ, but do not lead to a strong peak
in the JDOS. The dominant feature below 14 eV in the IQPA
spectrum is also an accumulation of many interband transitions
with different origins in the BZ but high JDOSs (see Fig. 5).

B. zb-AlN

Figure 6 shows the imaginary part of the dielectric function
for zb-AlN in the IQPA as well as the dielectric function
including excitonic effects. First, one observes a tremen-
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FIG. 6. (Color online) Imaginary part of the dielectric function of
zb-AlN. The spectrum in the IQPA (red dashed line) and the solution
of the BSE including excitonic and local-field effects (red solid line)
have been calculated using an 18 × 18 × 18 k-point mesh, a cutoff
of 20 eV, and a Lorentzian broadening of η = 0.2 eV. Experimental
data from Ref. 56 (black solid line) are given for comparison. For
the inset, the low-energy range of the spectrum has been computed
with a refined resolution employing a 40 × 40 × 40 mesh, a cutoff of
10 eV, and a broadening of η = 0.1 eV. Due to the increased number
of k points, a scissors shift instead of G0W0 QP corrections had to be
employed in this case.

dous redistribution of spectral strength to lower energies,
emphasizing the importance of including the electron-hole
interaction. The onset of the spectrum is characterized by a
steep rise in the optical absorption. With a moderate k-point
sampling of 18 × 18 × 18 mesh points and a broadening of
η = 0.2 eV, the solution of the BSE exhibits a plateau-like
region between 7 and 9.5 eV (see Fig. 6), which converges
very slowly with increasing k-point sampling. However, the
peak A, which is visible in the most recent high-resolution
spectral ellipsometry measurements56 at 7.26 eV is absent in
the computed curve and the oscillator strength of the plateau
seems to be underestimated. At higher energies, broad peaks,
labeled B, C, and D, are found in the calculated spectrum
in the vicinity of h̄ω = 11.5, 12.6, or 13.8 eV, respectively.
The positions of peaks B and C agree reasonably well
with experimental absorption maxima at 11.14 and 12.52 eV.
However, the spectral strength differs remarkably. Possible
reasons may be the sample quality or corrections used in the
extraction of the dielectric function from the ellipsometry data.

Previous ab initio studies25,69 comprise only the low-energy
range of the spectrum and agree very well with the results
shown here except for slight differences in the peak positions
and intensities, which are due to the improved calculation
of QP energies and optical transition matrix elements in the
present work (see Sec. II). References 25 and 69 likewise
observe the plateau-like behavior of Im ε(ω) between 7 and
9.5 eV, since the number of k points employed there is
comparable to the one used to calculate the spectrum in Fig. 6.

To resolve the fine structure of the absorption spectrum in
the low-energy range, an increased BZ sampling with 40 ×
40 × 40 k points is applied (see inset of Fig. 6). Thereby,
the BSE cutoff has to be reduced to 10 eV to keep the size
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of the Hamiltonian computationally tractable. Further, it is
prohibitive to calculate G0W0 QP corrections for such a large
number of k points. For that reason, a scissors operator of

QP = 0.95 eV, which ensures the reproduction of the direct
HSE03+G0W0 QP gap, has been used. The price to pay is
slightly redshifted high-energy interband transitions due to the
neglect of the frequency dependence of the QP shifts. With the
refined k-point sampling we obtain good agreement between
theory and experiment: The experimentally observed A peak
at 7.26 eV (Ref. 56) becomes clearly visible. (The deviating
value of h̄ω = 7.204 eV given in the text of Ref. 56 is a result
of the assumed deconvolution of the measured spectrum.) Its
height above the plateau fits very well.

In the following we want to point out to what extent it
is possible to assign critical-point energies to characteristic
features in the absorption spectrum of zb-AlN. To this end, the
joint band structure and JDOS of zb-AlN are plotted in Fig. 7.
Further, the QP transition energies at high-symmetry points
are given in Table IV. In contrast to most diamond-structure or
zinc-blende semiconductors, such as Si, Ge, or GaAs, whose
critical points follow the energetic sequence E0, E1, E′

0, E2,
E′

1 (see Ref. 29), one observes the ordering E0, E2, E1, E′
1, E′

2,
E′

0 for zb-AlN (see Table IV). Especially, the interchange of
E1 and E2 and the extremely high-lying E′

0 transition render
the interpretation of the experimental absorption spectrum
difficult. The reversed ordering of the E1 and E2 critical points
has been discussed recently by Röppischer et al.56 However,
their identification of peak positions matches only for E2 at
7.2 eV (using the denotation of the present paper; labeled E1

in Ref. 56) with the calculated QP transition energies, whereas
the peaks denoted as E1 at 7.95 eV, E′

1 at 11.14 eV, and E′
0

at 12.52 eV are in obvious disagreement with the values listed
in Table IV. This suggests that the interpretation of spectra of
nitrides and oxides is more difficult and cannot be based solely
on chemical trends derived for compounds without first-row
anions. The only obvious tendency is the increasing energy of
the E′

0 transition due to the increasing energetic difference of
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FIG. 7. (Color online) Joint band structure and JDOS for zb-AlN
in the HSE03+G0W0 approach. The interband-transition energies
from all valence bands v to the lowest conduction bands c = 1, . . . ,6
are shown. The calculated positions for the QP gap and the A, B, C,
and D peaks are indicated.

TABLE IV. Optical transition energies Ei , E′
i , and E′′

i (in eV)
from the highest valence to the first three conduction bands at the
high-symmetry points of the fcc BZ for zb-AlN. The energies are
taken from HSE03+G0W0 calculations (see Fig. 3).

Point Label i Ei E′
i E′′

i

� 0 6.06 14.67 20.31
L 1 10.00 12.77 13.88
X 2 7.22 12.81 18.66
W 3 11.20 16.80 17.03
K 4 8.76 14.04 17.29

the atomic p valence levels of the constituents when going to
lighter anions in the series of III-V compounds.51

The pronounced A peak in Im ε(ω) (see Fig. 6) can be
unambiguously assigned to an M0 critical point which stems
from the transitions between the highest valence and lowest
conduction band at the X point of the BZ (see Fig. 7). The
plateau between 7 and 9.5 eV, by contrast, cannot be identified
with a single critical point. Figure 7 shows that, even though
the M1 critical point at the L point lies only slightly above
the energy range in question, transitions from the three highest
valence bands into the lowest conduction band contribute to
the optical absorption over large parts of the BZ and form the
plateau.

The same holds for the broad feature B in Fig. 6. There are
many transitions from the second- and third-highest valence
bands to the lowest conduction band in the relevant energy
range, thus prohibiting a unique identification of the peak
with a single critical point. However, the B peak is clearly
not associated with the E′

1 transition, which occurs at higher
photon energies. Also the considerable width of the feature B

and its double-peak structure in the calculations (see Fig. 6)
suggest that it does not originate from a single critical point.

Peak C in Fig. 6, on the other hand, shows clear exci-
tonic modifications, in particular enhancement of oscillator
strength, when the electron-hole interaction is included in the
calculations. This observation indicates that it may be due to
critical points and not to an overall high JDOS in this energy
range. The joint band structure in Fig. 7 reveals that the M0

critical point E′
2 and the M2 critical point E′

1 lie slightly above
the C peak. The latter, however, cannot not be responsible
for the enhancement of oscillator strength, since M2 critical
points rather cause a damping,64 thus leaving E′

2 as the only
remaining alternative. Therefore, we can clearly contradict the
assignment of the C peak to the E′

0 critical point by Röppischer
et al.56

The D peak, which is merely a very faint feature in the
experimental spectrum (see Fig. 6), can be associated with the
M0 critical point E′′

1 (see Fig. 7 and Table IV). However, once
more there are many bands contributing to the peak over large
parts of the BZ, as becomes obvious from Fig. 7.

To strengthen our argumentation, Fig. 8 attempts to vi-
sualize the contributions of different k-space regions to the
imaginary part of the dielectric function including excitonic
effects. For this purpose, the full BSE spectrum, comprising
all k points in the BZ, as well as spectra excluding spherical
regions with radii of 0.05 × 2π/Å (0.1 × 2π/Å) around the
high-symmetry points �, X, and L are shown. That means that
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FIG. 8. (Color online) Contributions of different k-space regions
to the optical absorption of zb-AlN. The red solid line depicts the
solution of the BSE for the entire BZ. Further, spectra omitting spheres
with radii of 0.05 × 2πÅ −1 (black dashed line) or 0.1 × 2πÅ −1

(black dotted line) in k space around the high-symmetry points �,
X, and L are shown. The transition energies of important critical
points are indicated. A Lorentzian broadening of η = 0.15 eV has
been applied in the calculations.

contributions of 1% (9%) for �, 3% (27%) for X, or 4% (36%)
for L of the BZ volume are left out. Consequently, one would
expect a reduction of the oscillator strength of a peak in the
spectrum if this peak mainly stems from a critical point whose
vicinity in k space has been excluded from the calculations.
However, there are two counteracting effects: First, there are
additional line-shape modifications due to the neglect of the
interaction between the excluded transitions and the remaining
ones. Second, an enhancement of oscillator strength near the
energy of the excluded critical point can also occur. The
neglect of optical transitions near M0 critical points simulates a
Pauli blocking, as is known, for instance, from the occurrence
of degenerate electron gases in conduction-band valleys of
doped semiconductors, which should be accompanied by
the formation of a Fermi-edge singularity as in the case of
Mahan excitons.70,71 In contrast to Mahan excitons, where
also the screening of the electron-hole interaction is modified,
an artificial enhancement of the oscillator strength at the
singularity can be found.

If the surrounding of the � point is excluded from the
calculation of the spectrum, indeed the contributions to the
E0 structure disappear. For E′

0, this effect is significantly
weakened due to the comparably strong contributions of
other transitions in the relevant spectral region. Similarly
pronounced reductions occur near the E2 (A peak) and the
E′

2 (C peak) critical-point energies if the vicinity of the X

points is omitted, thus indicating strong contributions of optical
transitions around the X points to these spectral features,
in agreement with the analysis of the joint band structure.
Further, it can be shown that the exclusion of the L points
leads to a reduction of the E′

1 structure (D peak). However,
the C peak near E′

1 remains uninfluenced, suggesting that
the contribution of optical transitions near the L points is
negligible for the reasons discussed above. In the low-energy
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FIG. 9. (Color online) Imaginary part of the dielectric function
of wz-AlN for (a) ordinary and (b) extraordinary polarization. The
spectrum in the IQPA (red dashed line) and the solution of the
BSE including excitonic and local-field effects (red solid line) are
depicted. Experimental data from Ref. 72 (black solid line) are given
for comparison. A Lorentzian broadening of η = 0.2 eV has been
applied.

range, one observes the artificial peaks P�1 (P�2 ) or PX1

(PX2 ), stemming from the Coulomb enhancement effects due
to the Pauli blocking. As stated before, such a behavior is
characteristic for the exclusion of spherical k-space regions
around M0 critical points and renders this kind of analysis so
difficult.

C. wz-AlN

In Fig. 9, the computed absorption spectra of wz-AlN
are shown for ordinary (ord.) and extraordinary (eo.) light
polarization. Apart from the bound excitonic state at the
absorption onset, which will be discussed in detail in Sec. V C,
the low-energy range of Im ε(ω) is governed by a double-peak
structure, labeled Aord and Bord, at photon energies of h̄ω = 7.9
and 8.9 eV for ordinary polarization. The extraordinary polar-
ization direction exhibits a peak denoted as Aeo at h̄ω = 7.8 eV
and a shoulder around 9.0 eV. In the high-energy range, we
find peaks at h̄ω = 12.0 and 12.7 eV as well as a pronounced
structure around 14 eV in the ordinary polarization direction.
For extraordinary polarization, a three-peak structure located
around 11.2, 12.6, and 13.7 eV occurs.

We observe good agreement with previous
computations:25,73 This holds particularly for the peak
positions. In comparison with Ref. 73 even the peak
intensities agree. Because of the use of PAW wave functions
and the ameliorated treatment of the optical transition matrix
elements in the present paper, we find higher oscillator
strengths compared with the spectra presented in Ref. 25.

The experimental absorption spectrum of wz-AlN,72 which
is known only up to photon energies of 9.8 eV, is in very
good agreement with the solution of the BSE (see Fig. 9).
The matching of the peak positions is excellent, and also the
deviations in the peak intensities are smaller than 10%.

To analyze the absorption spectra in terms of critical points,
the joint band structure and JDOS as well as the QP transition
energies are given in Fig. 10 and Table V, respectively. They
were obtained using a 12 × 12 × 10 k-point mesh, since the
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FIG. 10. (Color online) Joint band structure and JDOS (per
formula unit) for wz-AlN in the HSE03+G0W0 approach. The
interband-transition energies from all valence bands v to the lowest
conduction bands c = 1, . . . ,6 are shown. The calculated positions
for the QP gap, the Aord and Bord peaks in ordinary light polarization,
and the Aeo peak in extraordinary polarization are indicated.

8 × 8 × 6 grid does not comprise all high-symmetry points
of the BZ. The excitonic peak at the absorption onset can be
unambiguously assigned to the E0 transition at the � point. The
peaks Aord and Aeo, which are very close in energy, are clearly
due to the M0 critical point at 8.15 eV along the M-L line.
Due to the strong electron-hole interaction, the excitonic peak
is redshifted by about 0.3 eV compared with the QP transition
energy in the joint band structure (see Fig. 10). Furthermore,
this bound excitonic state is in resonance with the continuum
of single-particle transitions.

In contrast to the A peaks, the B peak in ordinary
polarization or the shoulder in extraordinary polarization
cannot be identified with a single critical point in the JDOS
of wz-AlN. Interband transitions from large parts of the BZ
contribute to the optical absorption in the relevant energy
range (see Fig. 10). For instance, the points E′

0, E1, E2, and
E′

2 match approximately in terms of their transition energies,
but this holds also for interband transitions apart from the
high-symmetry points. As is obvious from Fig. 10, such a
critical-point analysis becomes impossible for the absorption
peaks above 10 eV. In our opinion, an assignment of the
peaks to certain interband transitions just by looking on a
band structure derived within the empirical pseudopotential
method74 is highly doubtful.

TABLE V. Optical transition energies Ei , E′
i , and E′′

i (in eV) at the
high-symmetry points of the hexagonal BZ for wz-AlN. The energies
are taken from HSE03+G0W0 calculations (see Fig. 3).

Point Label i Ei E′
i E′′

i

� 0 6.13 8.77 13.10
L 1 8.85 13.05 15.94
M 2 8.66 8.70 11.20
A 3 9.22 13.22 14.31
K 4 9.65 13.44 14.84
H 5 10.58 10.90 15.55

V. NEAR-BAND-EDGE EXCITONS

The discussion of the spectral features in Sec. IV was based
on the computation of the dielectric function ε(ω) in a wide
range of photon energies. Here, we focus on the absorption
edge. The pair-excitation energies E�, i.e., the solutions of the
eigenvalue problem in Eq. (1), and the corresponding oscillator
strengths,

f�(q̂) = 2 m0

h̄2

∣∣∣∣∣
∑
cvk

Mq̂(cvk) A∗
�(cvk)

∣∣∣∣∣
2

E�, (5)

of the lowest pair excitations are calculated as described in
Ref. 23 in detail.

In principle, excitonic binding energies can be derived from
the difference between the QP gap and the pair-excitation
energies of the bound excitonic states. However, such binding
energies have to be handled with due care. For the description
of Wannier–Mott-like excitons that occur in materials with
parabolic band extrema, extremely high k-point densities are
necessary (see discussion on convergence in Ref. 23). In
the approach presented here, i.e., using HSE03+G0W0 QP
energies, such dense k-point samplings cannot be achieved
(see Sec. II). That is why we are restricted to qualitative
answers concerning exciton binding energies and oscillator
strengths. The experience gained for the Wannier–Mott model,
MgO, and InN23 suggests that an increased BZ sampling would
lead to larger binding energies. On the other hand, there is a
partial error cancellation between too coarse k-point samplings
and the neglect of the lattice contributions to the screening
of the Coulomb interaction. Taking the latter into account
leads to larger dielectric constants and, hence, reduced binding
energies of Wannier–Mott-like excitons if the longitudinal
optical phonon frequencies are larger than the exciton binding
energies.25,75

However, in the present paper, the focus lies on another
issue. We primarily intend to unravel the location of the
excitons in the BZ to answer the questions related to their
identification with critical points. For this purpose, the applied
k-point sets are sufficient. To visualize the k-space distribution
of bound excitonic states, the quantity

C�(k) =
∑
cv

|A�(cvk)|2 , (6)

which can be regarded as a density distribution of the exciton
in reciprocal space, is analyzed.

A. rs-CaO

The pair-excitation energies in the vicinity of the absorption
edge of CaO as well as the corresponding oscillator strengths
are shown in the upper panel of Fig. 11. One finds two threefold
degenerate eigenvalues, labeled E�1 and E�2 , 171 and 21 meV
below the QP gap (see Fig. 11), which correspond to the
critical point E0 and stem from transitions near the threefold
degenerate VBM �15v and the CBM �1c. These excitations
constitute the lowest bound excitonic states, i.e., the 1s and
2s levels, of a Wannier–Mott-like exciton series. However,
the typical 1/n2 behavior for the binding energies or 1/n3

behavior for the oscillator strengths, with n running over
positive integers, cannot be observed due to the inclusion of the
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FIG. 11. (Color online) Pair-excitation energies E� and oscillator
strengths f� of CaO near the absorption edge. For comparison, the
imaginary part of the dielectric function with η = 0.1 eV is indicated
by the red solid line (upper panel). The lower panels visualize the
distribution of the excitonic wave function in reciprocal space for
selected pair excitations marked in the upper panel.

full (nonparabolic) band structure as well as the convergence
issues discussed above. In the lower panel of Fig. 11, the
localization of the excitonic wave function in k space is shown
for the states E�1 and E�2 , which clearly reveals the strong
contributions from the BZ center.

Above the fundamental gap, six nearly degenerate eigen-
values denoted as EX1 occur. They are followed by another
group of sixfold degenerate eigenvalues labeled EX2 . The plot
of the corresponding excitonic wave functions in reciprocal
space (see Fig. 11) shows that these excitations are almost
completely due to transitions near the X points of the BZ.
They constitute bound excitonic states with respect to the M0

critical point E2 (X5′v → X3c) and have binding energies of
254 and 84 meV within the reached level of convergence.
This is in excellent agreement with the assignment of the
A peak in the absorption spectrum to the E2 critical point
(see Sec. IV A). In principle, Fano resonances76 can occur if
the bound states of higher critical points are interacting with
the underlying continuum of interband transitions. However, a
much denser k-point sampling would be necessary to resolve
such a fine structure in the absorption spectrum. The sixfold
degeneracies of the EX1 and EX2 excitations originate from the
twofold degenerate valence-band state X5′v (see Fig. 2) and the
occurrence of three equivalent X points in the f cc BZ.

B. zb-AlN

The situation in zb-AlN is quite comparable to the one
observed for CaO because of the common cubic symmetry in
the absence of spin-orbit coupling. We also find a threefold
degenerate eigenvalue labeled E�1 , which lies 122 meV below
the absorption edge. Its excitonic wave function is localized
in the surroundings of the � point. However, the second
triplet E�2 , which originates from the vicinity of the BZ
center as well, lies above the E0 critical point energy and
is, therefore, not a bound excitonic state. As shown in Ref. 23
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FIG. 12. (Color online) Pair-excitation energies E� and oscillator
strengths f� of zb-AlN near the absorption edge. The imaginary part
of the dielectric function with η = 0.1 eV is indicated by the red
solid line (upper panel). The lower panels visualize the distribution
of the excitonic wave function in reciprocal space for selected pair
excitations marked in the upper panel.

such a behavior may be a consequence of a too coarse k-point
sampling.

In accordance with the analysis in Sec. IV B, one finds
bound excitonic states which are associated with the E2 critical
point. The sixfold degenerate eigenvalues EX1 and EX2 with
binding energies of 143 and 19 meV can be clearly attributed
to the X points of the BZ (see Fig. 12).

C. wz-AlN

In wz-AlN, the crystal-field splitting between the �5

and �1 states amounts to −235 meV in the HSE03+G0W0

approach. This value is close to measured splittings of
−230 meV (Ref. 77) and −225 meV (Ref. 78). The crystal
field is responsible for a significant polarization anisotropy of
the optical absorption edge. In Fig. 13, excitation energies
and oscillator strengths of the lowest pair excitations in
ordinary and extraordinary polarization directions are given.
Because of the negative sign of the crystal-field splitting the
absorption edge associated with the QP transition �1v → �1c

in extraordinary polarization occurs below the absorption edge
in the ordinary polarization direction, which is related to the
�5v → �1c transition. The bound excitonic states with respect
to the particular absorption edges are denoted as A or B/C (see
Fig. 13). Their absolute positions at 5.99, 6.22, and 6.22 eV
agree well with the experimentally found peak positions at
6.025, 6.243, and 6.257 eV (Ref. 77) or 6.029, 6.243, and
6.268 eV (Ref. 78). This reasonable agreement of the absolute
values and their splittings is really surprising taking into
account that spin-orbit interaction and lattice screening effects
have been neglected in the theoretical description and strain in
the samples might bias the experimental results. However, the
exciton binding energies of 138 meV (A) and 148 meV (B/C)
are too large compared with the most recent experimental
results of 58 meV from ellipsometry measurements.79 Model
calculations80 using an anisotropic Wannier–Mott ansatz with
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FIG. 13. (Color online) Pair-excitation energies E� and oscillator
strengths f� near the absorption edge of wz-AlN for (a) ordinary and
(b) extraordinary polarization. The imaginary part of the dielectric
function with η = 0.2 eV is indicated by the red solid line.

effective dielectric constants yield binding energies of 51 meV.
An ab initio method, which includes the lattice screening
effects properly and may resolve the discrepancies, is yet to
be developed.

VI. SUMMARY AND CONCLUSIONS

In the present paper, we have calculated the QP band
structures of CaO and AlN in the rs, zb, and wz structures.
Thereby, the QP equation in the G0W0 approximation has been
solved perturbatively on top of the self-consistent solution
of a QP equation in which the self-energy is described by
the nonlocal HSE03 hybrid functional. Accurate values for
the indirect and direct band gaps of all polymorphs have
been derived, which are in excellent agreement with the
available experimental results. Significant improvements over

the standard approach LDA/GGA+G0W0 are evident. Based
on these QP band structures, the optical absorption spectra
of rs-CaO, zb-AlN, and wz-AlN have been studied. The
calculated dielectric functions including excitonic effects,
which have been obtained by solving the BSE, are in very
good agreement with recent measured absorption spectra.

The main focus of the paper was to unravel the origin of
peaks and structures in the imaginary part of the dielectric
function. For this purpose, three complementary methods have
been applied: (i) Critical points in the joint band structure
were identified and analyzed in terms of their M0, M1, M2,
or M3 character; (ii) spherical regions in k space around the
high-symmetry points �, X, and L have been excluded from
the BSE and the resulting changes in the obtained spectra have
been evaluated; and (iii) the localization of the excitonic wave
function in reciprocal space has been investigated for the low-
energy excitations. All three methods yield a widely consistent
picture: Some peaks in the absorption spectra can primarily be
assigned to bound excitonic states at M0 or M1 critical points.
Such states do not only occur at the first direct absorption edge,
but are also found near higher critical points in resonance with
the continuum absorption of the interband transitions. Other
peaks cannot be identified with critical points. They are due
to a large JDOS in the relevant spectral range with various
bands or large parts of the BZ contributing to the absorption.
For the materials studied here, a consistent interpretation of
most of the spectral peaks has been found which may help
experimentalists in interpreting their measurements.
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