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We use time-dependent density functional theory to study self-irradiated Si. We calculate the electronic
stopping power of Si in Si by evaluating the energy transferred to the electrons per unit path length by an
ion of kinetic energy from 1 eV to 100 keV moving through the host. Electronic stopping is found to be
significant below the threshold velocity normally identified with transitions across the band gap.
A structured crossover at low velocity exists in place of a hard threshold. An analysis of the time
dependence of the transition rates using coupled linear rate equations enables one of the excitation
mechanisms to be clearly identified: a defect state induced in the gap by the moving ion acts like an elevator
and carries electrons across the band gap.
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To maintain useful operational lifetimes of nuclear
facilities and space equipment, their components need to
be resilient to radiation [1–3]. For this reason, the effects of
radiation have been extensively studied, experimentally and
theoretically. Most of the scientific instruments used in the
nuclear and space industries are made from semiconductors
that may be damaged when exposed to radiation, so it is of
critical importance to understand how radiation damage in
semiconductors is initiated and evolves over time.
Our understanding of the effects of radiation on materials

is largely based on a classical picture of ion-ion collisions.
Only recently have improvements in quantum mechanical
electronic structure techniques and computational facilities
allowed the electronic contributions to be investigated
quantitatively [4–9]. The stopping power—the kinetic
energy lost per unit path length by a particle (projectile)
moving through a target (host) material [10]—has histor-
ically been divided into ionic and electronic components
[11]. Electronic stopping is most important at high veloc-
ities or under channeling conditions, when the projectile
travels a large distance without undergoing direct collisions
with host atoms. A projectile on a channeling trajectory
mainly perturbs the electron density.
The material studied in this Letter is self-irradiated

silicon at low projectile velocities (i.e., due to a primary
knock-on ion or secondary events). The projectile kinetic
energy K ranges from 1 eV to 100 keV, which is low
enough to ensure that the evolution of the electronic states
is only weakly nonadiabatic.
Semiconductors and insulators amorphize on irradia-

tion [12], with the degree of amorphization largely
governed by the interplay between short-range covalent
and long-range Coulombic forces [13]. Electronic stop-
ping of high-energy atoms reduces the peak size of the

damaged region [14], as well as the extent of the residual
damage after partial recrystallization [15]. The electronic
stopping of lower energy atoms in insulators is less well
understood but could be equally significant: in metals,
electronic stopping of low-energy atoms can dominate
energy transfer, as there are so many of them during the
cooling phase of the radiation damage cascade [16–18]. It
is the behavior of the cascade that dictates the final
distribution of damage [19].
Details of the electronic structure (such as the band gap

and the density of states) play a fundamental role at low
projectile velocities, so we use a first-principles molecular
dynamics technique in which the electronic excitations are
described by time-dependent density functional theory
(TDDFT) with no adjustable parameters. This approach
captures the complicated band-structure features of the
silicon-plus-silicon system without treating the projectile as
a weak perturbation. TDDFT complements a variety of
other atomistic and nonatomistic techniques with adjust-
able parameters [7,20,21]. Based on our simulation results
and a quantum mechanical band-structure picture, we
propose a coupled-rate-equation model that explains the
electronic stopping mechanisms in this regime.
It has been suggested that there is a threshold velocity

below which a light projectile (e.g., a proton) moving
through an insulator (e.g., LiF) is unable to exchange
sufficient energy to excite electrons across the band gap
[5,22]. The electronic stopping would be strictly zero
below this threshold. An estimate of the threshold velocity
follows from the observation that a projectile channeling
through a crystal induces a time-varying potential oscil-
lating at the atom-passing frequency f ¼ v=λ, where λ is
the distance between equivalent lattice positions. (For the
h001i channel of Si, λ ¼ a=4, where a is the lattice
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parameter.) The threshold velocity vth may be obtained by
equating hf (h is Planck’s constant) to the band gap Δ,
giving

vth ¼
λΔ
h

: ð1Þ

An alternative estimate may be obtained by considering
dielectric stopping theory [23]. In practice, the thresholds
given by Eq. (1) and dielectric theory are very similar
despite their different physical origins. For a material with
the valence electron density of silicon and a gap of 0.6 eV
[the band gap of Si according to density functional theory
within the local-density approximation (LDA)], the
thresholds are 0.20 and 0.25 Å fs−1 (K ¼ 56 and 92 eV).
Artacho [21] approached the problem of electronic

stopping using a simple 1D model with time-dependent
hopping between flat bands. He showed that the depend-
ence of the stopping on velocity can be quite intricate and
that, although the stopping vanishes as v → 0, there is no
hard threshold.
Experimentally, the presence of a threshold is debatable

[24–26] due to difficulties in separating the nuclear and
electronic stopping powers at low velocity [27]. Auth et al.
[24] and Markin et al. [25] considered channeling ions in a
LiF crystal and both claimed the presence of a hard
threshold. However, Eder et al. [26] did not observe a
threshold for protons in LiF, arguing that below-threshold
stopping is possible due to molecular orbital promotion, in
which the local band gap is reduced as the channeling ion
passes through the crystal. Motivated by these open
questions in experiment and theory, the simulation results
reported in this Letter suggest a simple resolution of the
velocity threshold debate.
Our TDDFT simulations were carried out using a non-

adiabatic modification [28] of the first-principles quantum
molecular dynamics code QBOX[29] to investigate a Si in Si
system. The adiabatic local density approximation to
exchange and correlation was used throughout, as it produces
the best compromise between accuracy and computational
expense at the present time. The periodic supercell contained
216 stationary Si atoms in the diamond structure plus the
channeling Si atom (a total of 868 valence electrons). The Si
projectiles of most interest in this work have kinetic energies
of less than 1 keV, which is too low for any significant
channeling to take place. However, the interpretation of the
results is much simplified by dragging the projectile at
constant velocity along a channel in an otherwise stationary
crystal, allowing electrons to become excited according to
the time-dependent Kohn-Sham equations [30]. We discuss
the relationship between these idealized simulations and
reality below. The wave functions were expanded in a plane-
wave basis with an energy cutoff of 680 eV; the supercell Γ
point was used for k-point sampling. The wave functions
were evolved in time using the Runge-Kutta algorithm [28]

and a time step of 0.00242 fs. Halving the time step did not
significantly alter the results.
To obtain the excitation energy ΔEðzÞ of the electrons at

a given position z of the channeling ion, we subtracted the
Born-Oppenheimer energy (the ground-state energy at the
current position of the channeling ion) from the non-
adiabatic energy (the time-dependent Kohn-Sham energy
[28] of the system including the channeling ion). The
calculation was repeated for each projectile velocity [5].
Figure 1 shows the simulated electronic stopping for

motion along the h001i channel. The stopping power has
three distinct regions: (i) a high-energy metallike regime
where the stopping varies linearly with velocity, (ii) an
intermediate (band-edge) regime where there is a rapid rise
in the stopping power with velocity, and (iii) a prethreshold
regime at very low velocities. We note that a nonzero
electronic stopping power is observed at velocities well
below the thresholds estimated above.
Our calculated stopping power is about a factor of 2

smaller than predicted by the SRIM model [11], which is
fitted to experiment at higher velocities and extrapolated to
low velocities. This may be because real channeling
ions do not travel exactly along the center of a channel
[27]. Off-center channeling has been reported to increase
the electronic stopping power by approximately a factor
of 2 for several materials [31,32]. Head-on collisions with
lattice atoms also increase the electronic stopping.

FIG. 1. Electronic stopping power of a Si self-interstitial
moving along the h001i channel as a function of projectile
kinetic energy K. Eth and E0

th are calculated using Eq. (1) with the
LDA band gap and an energy difference of 0.2 eV, respectively.
There are three distinct regions: in the metallike regime
(K > 3000 eV, v > 1.45 Å fs−1) the stopping is linear in
projectile velocity, with a slope of 1.47 eV fsÅ−2; in the band-
edge regime (60 < K < 3000 eV, 0.2 < v < 1.45 Å fs−1) the
stopping rises rapidly with velocity; in the prethreshold regime
(K < 60 eV, v < 0.2 Å fs−1) the stopping is nonzero. The inset
shows the stopping power as a function of ion velocity minus the
metallic stopping power [defined as Sm ¼ γ × ðv − v0Þ for
v > v0, where γ and v0 are fitted to the high velocity points].
Stopping powers from the SRIM model [11] (extrapolated to low
velocity) and experiment (lowest velocity point measured in
Ref. [27]) are also shown.
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We would like to note that more sophisticated
approaches, based on the dielectric and current response
but including the exact many-body and dynamic
exchange-correlation treatment, are available in the liter-
ature [33].
Atkinetic energiesgreater than3000eV(v ≥ 1.45 Å fs−1),

the electronic stopping power is directly proportional to the
channeling velocity, as shown by Fig. 1. At these high
velocities, electronic energy transfer is dominated by direct
excitations from deep in the valence band to high in the
conduction band and the band gap becomes irrelevant.
The DFT band-gap error is also irrelevant. We refer to this
as the metallic stopping regime.
According to Eq. (1) a Si projectile in Si needsK ≳ 60 eV

to excite electrons across the LDA band gap. The exper-
imentally observed gap is larger than the LDA gap, so the
true kinetic energy threshold is almost certainly larger than
60 eV, but this quantitative error is unlikely to affect the
qualitative nature of our results or our conclusions. Figure 1
shows a rapid increase in stopping for projectile energies
between 60 and 3000 eV. We believe this is due to the rapid
increase in the number of states available for direct tran-
sitions as the projectile kinetic energy increases and states
deeper in the valence and conduction bands become acces-
sible. Hence, we refer to this as the band-edge regime.
In addition, Fig. 1 shows a structured nonzero

electronic stopping power in the prethreshold regime
below 60 eV (v ≤ 0.2 Å fs−1). This region is important
for the later stages of a collision cascade when the structure
of the permanent damage is determined [19,34]. Further
TDDFT simulations [35] have shown analogous subthresh-
old stopping for other projectiles in Si, and we would
expect qualitatively similar results to be obtained for other
host semiconductors.
The below-threshold electronic stopping may be under-

stood in terms of the electronic structure of the Si projectile,
which acts in many respects like an interstitial. An adiabatic
(Born-Oppenheimer) calculation of the electronic structure
shows that the addition of a frozen projectile creates a
strongly localized unoccupied defect state near the middle
of the gap. The energy ϵdðzÞ of the midgap defect state
jψdðzÞi relative to the band edges is shown in the left-hand
panel of Fig. 2 as a function of projectile position z.
The time-dependent occupation ndðtÞ of this state in a

nonadiabatic simulation may be calculated by projecting
the time-evolved TDDFT Kohn-Sham wave functions
jϕiðtÞi on to jψdðzðtÞÞi:

ndðzðtÞÞ ¼
X

i∈occ
jhϕiðtÞjψdðzðtÞÞij2: ð2Þ

Similarly, by summing over conduction band states, we
can calculate the population of the conduction bands.
The results in Fig. 3 show that, although initially empty,
the midgap defect level becomes fractionally occupied at

the lowest point of its energy oscillation, acquiring elec-
trons from the valence bands via a process analogous to
Zener tunneling [36]. These electrons are carried along with
the defect state until it reaches the highest point of its
energy oscillation, at which point the occupation drops as
electrons are promoted into the conduction band. The
defect level acts as an “electron elevator,” ferrying electrons
across the gap. The elevator effect is purely dynamic and is
only observed when the projectile velocity is nonzero. The
total electronic energy increases (and the ionic kinetic
energy decreases) every time an electron is promoted, either
directly across the gap or via the elevator state.
Included in Fig. 3 are results from a linear set of coupled

rate equations that describe the time evolution of the
populations of the states. (More details are provided in
the Supplemental Material [37].) These equations give an
accurate description of the time dependence of the state
occupations, as calculated from TDDFT, with just three
fitting parameters: the rate Rcv at which electrons are
excited directly from the valence band to the conduction
band, the rate Rdv at which electrons are excited from the
valence band to the defect level, and the rate Rcd at
which electrons in the defect level are excited into the
conduction band. The rate equations do not capture the
time-dependent oscillations seen in Fig. 3 because they
assume time-independent states and rate coefficients. The
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FIG. 2. Left: evolution of the adiabatic energy eigenvalues at
the supercell Γ point as a function of the position of the projectile
along the h001i channel in Si. The addition of the channeling ion
creates a midgap “elevator state” (red line), the energy of which
oscillates as the projectile moves along the channel. The smallest
difference between the elevator energy and the valence (con-
duction) band edge is approximately (less than) 0.2 eV. Right:
evolution of the adiabatic energy eigenvalues during a Born-
Oppenheimer quantum molecular dynamics simulation in which
a Si interstial in a relaxed crystal of 64 initially stationary Si
atoms was given an initial velocity of 0.2 Å fs−1 in the h001i
direction. All 65 atoms were allowed to move in response to the
interatomic forces generated during the simulation. The initial
velocity of 0.2 Å fs−1 is too low for channeling to take place, but
the elevatorlike behavior of the defect states remains apparent.
Similar elevatorlike behavior was observed when the initial
velocity of the projectile was along the h110i direction.
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velocity-dependent rate coefficients are plotted in the lower
panel of Fig. 4; the upper panel shows the relative
contribution of direct transitions to the total electronic
stopping as a function of velocity. We have also analyzed
these rates using adiabatic perturbation theory; the results
will be presented elsewhere [35]. For one moving Si atom
and 216 stationary Si atoms, indirect excitations via the
elevator state dominate throughout the prethreshold regime.
The contribution of the elevator to stopping is most

important in the low-velocity below-threshold regime.
Since Si projectiles do not channel through Si at such
low velocities, the relevance of the elevator needs clarifi-
cation. The right-hand panel of Fig. 2 shows the evolution
of the adiabatic energy levels during a Born-Oppenheimer
quantum molecular dynamics simulation in which a tetra-
hedral Si interstitial in a fully relaxed crystal of 64
stationary Si atoms was given an initial velocity of
0.2 Å fs−1 (corresponding to an initial kinetic energy of
58 eV) in the h001i direction. The other atoms, although
initially stationary, were all free to move. Although no
channeling takes place, the strong elevatorlike behavior of
the defect states is apparent.
Recently Ullah et al. [38] used TDDFT, perturbation

theory, and experimental techniques to show a hard
stopping threshold for a proton in Ge. This is not
contradicted by our results: a proton in Si has a flat
elevator state and so produces effectively zero electronic
stopping power at low velocities [35].
In summary, direct simulations have shown that there are

three regimes in the electronic stopping power of Si in a Si

crystal. In the metallic regime at kinetic energies greater
than 3000 eV, the electronic stopping power is directly
proportional to the velocity of the channeling ion. The
electronic stopping in this regime is dominated by direct
excitations from valence-band states to conduction-band
states and is insensitive to the detailed structure of the
density of states, including the presence of the band gap.
The band-edge regime is observed for kinetic energies

between 60 and 3000 eV. The significant increase in the
electronic stopping power with kinetic energy observed in
this regime originates from the steep rise in the number of
states available for direct band-to-band transitions as the
kinetic energy increases.
While experiments show that ion-track damage is sensi-

tive to preexisting electronic defect states [39], here we
show the importance of dynamic defect states in the
prethreshold regime, where the electronic stopping power
remains nonzero at velocities much lower than the naive
threshold. The complicated energy dependence of the
stopping power in this regime is generated by indirect
transitions from the valence band to the conduction band
via an elevator level in the band gap. This suggests that any
realistic model of velocity-dependent forces in a material
with a band gap should allow for stopping below traditional
thresholds. At low velocities the electronic stopping is
controlled not only by the band gap but also by the local
electronic structure of the defects present in the material.

This work was performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National
Laboratory under Contract No. DE-AC52-07NA27344.
Computing support for this work came from the
Lawrence Livermore National Laboratory Institutional
Computing Grand Challenge program. A. L. was supported
by the CDT in Theory and Simulation of Materials at

Position ( )

O
cc

up
at

io
n

Elevator state

Conduction states

E
ne

rg
y 

(e
V

)

FIG. 3. Evolution of the occupation of the elevator state as an
ion of kinetic energy 39 eV (v ≈ 0.164 Å fs−1) travels down the
h001i channel. The defect state gains electrons when its energy is
close to the valence band edge and loses electrons when its energy
is close to the conduction band edge; the loss of electrons from
the defect state is accompanied by a corresponding increase in the
occupation of the conduction band. The elevator state thus
controls the excitations of electrons to the conduction band.
The dashed lines show a fit to the rate-equation model described
in the text.

FIG. 4. Bottom: the velocity dependence of the rates of
excitation directly from the valence band to the conduction band
(Rcv), from the valence band to the defect level (Rdv), and from
the defect level to the conduction band (Rcd). Top: the ratio of the
rate of direct valence-conduction excitations to the rate of
excitations via the defect state.
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