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Voltage-induced switching of an antiferromagnetically ordered topological Dirac semimetal
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An antiferromagnetic semimetal has been recently identified as a new member of topological semimetals that
may host three-dimensional symmetry-protected Dirac fermions. A reorientation of the Néel vector may break the
underlying symmetry and open a gap in the quasiparticle spectrum, inducing the (semi)metal-insulator transition.
Here, we predict that such a transition may be controlled by manipulating the chemical potential location of
the material. We perform both analytical and numerical analysis on the thermodynamic potential of the model
Hamiltonian and find that the gapped spectrum is preferred when the chemical potential is located at the Dirac
point. As the chemical potential deviates from the Dirac point, the system shows a possible transition from
the gapped to the gapless phase and switches the corresponding Néel vector configuration. We perform density
functional theory calculations to verify our analysis using a realistic material and discuss a two terminal transport
measurement as a possible route to identify the voltage-induced switching of the Néel vector.
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I. INTRODUCTION

Graphene has long been studied as a condensed matter
testbed for the relativistic Dirac equation [1,2]. The Dirac
points, where the valence and the conduction band touch, are
protected from opening a gap by the combination of time-
reversal (T ) and inversion (P) symmetry [1]. The Dirac points
are robust to symmetry preserving perturbations providing a
reliable platform to study many intriguing physical phenomena
including an extremely high carrier mobility [3,4], Klein
tunneling [5,6], and anomalies in quantum Hall effect [7–9].
Recent progress in topological semimetals has extended the
realization of relativistic particles in a condensed matter system
from two-dimensional to three-dimensional solids [10].

A linear crossing of the band inside the bulk has been
predicted and discovered in materials with a broken [11–13]
P or broken [14,15] T . The low-energy excitation of such
materials is described by Weyl fermions, whose Hamiltonian
is H (k) = ∑

i,j=x,y,z vij kiσj , where σi=x,y,z are the Pauli
matrices and vij is the Fermi velocity assuming det[vij ] �= 0.
Weyl fermions cannot be gapped out by perturbations as all
the Pauli matrices are used in its construction, and these band
crossing points, Weyl nodes, are characterized by the Chern
number obtained from [16] sgn(det[vij ]) = ±1. Nevertheless,
when two Weyl fermions with opposite Chern numbers are
brought together at the same point in momentum space, such
fourfold degeneracy is not protected and may be gapped out,
annihilating the Weyl nodes. However, a particular space group
symmetry along with theP andT symmetry may prohibit such
annihilation and preserve the fourfold degeneracy, forming a
3D Dirac fermion [16,17]. Although breaking any of the above
symmetries typically lifts the fourfold degeneracy [10], break-
ing both P and T but preserving the combination of PT along
with an additional space group symmetry may still protect the

Dirac fermion [18]. An antiferromagnetic semimetal (AFS)
is an example where both P and T are broken but PT may
be preserved with an extra nonsymmorphic crystal symmetry.
Recent studies have shed light on AFS as a new class of materi-
als that may host symmetry protected Dirac fermions [18–20].
Interestingly, the reorientation of the antiferromagnetic (AF)
order may break the underlying crystal symmetry and gap out
Dirac fermions in the presence of spin-orbit coupling. Then the
system may undergo a (semi)metal-insulator transition (MIT)
resulting in a change in the magnetoresistance of the material
[20]. Therefore, the electronic transport response of AFS may
be modulated by manipulating the spin orientation, thereby
providing a potential novel platform for spintronic devices and
applications [20].

A straightforward method to control the magnetism is to
couple the net magnetic order of the material with the external
magnetic field. However, the lack of net magnetization in
antiferromagnets makes it challenging to find a suitable knob
to control antiferromagnetic order. In this regard, spin-orbit
coupling provides a promising path to control the spin degree
of freedom via charge current flow. Such spin transfer torque
is referred to as spin-orbit torque (SOT) [21,22] and induces
nonequilibrium spin polarization even in the absence of a net
magnetization. Recently, it has been theoretically proposed
[20,23] and experimentally demonstrated [24] that current
induced SOT provides a novel way to manipulate AF order.
Although SOT similarly provides a mean to manipulate AF
order of the AFS, it is unclear whether a sufficient SOT is
induced when AFS is initially in a gapped phase due to the
lack of the current flow. In addition, biaxial anisotropy energy
is required to stabilize two distinct spin configurations which
correspond to the metallic and insulating phase of the AFS. To
tackle this challenge, we propose an alternative route to induce
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MIT by utilizing a gate controlled AF order. The mechanism we
propose exploits the fact that the gapless and gapped phase of
the AFS exhibit different total energy depending on the location
of the chemical potential, therefore, we may manipulate a
preferred phase and its corresponding AF order by gating
the material. Such voltage-induced magnetic order control has
been proposed in a ferromagnetic material proximity coupled
to the graphene [25] and topological insulator surface states
[26,27] and has been proposed conceptually in antiferromag-
netic material [28].

The remainder of the paper is organized as follows. In
Sec. II, we first introduce a background on symmetry protected
Dirac fermions in AFS. In Sec. III, we outline the tight-binding
model Hamiltonian that we will use for numerical calculation
of the AFS properties. In Sec. IV, we describe our analysis
on the free energy of different AF order configurations and
show that the MIT occurs by manipulating the chemical
potential of the system. In Sec. V, we additionally propose
a two-terminal experiment on the AFS proximity coupled with
a ferromagnetic insulator which exhibits a distinct signature
of the voltage-induced AF order switching. In Sec. VI, we
summarize our results.

II. SYMMETRY PROTECTED DIRAC SEMIMETAL IN
ANTIFERROMAGNETIC MATERIAL

Orthorhombic CuMnAs and CuMnP have been investigated
as candidate materials that may host 3D Dirac fermions near
the Fermi level [18]. The eigenvalue spectrum indeed shows
multiple Dirac fermions along the edge of the Brillouin zone
(BZ). While the Dirac fermions are gapped in the presence
of spin-orbit coupling, the Dirac points located at specific
BZ edge are protected. Understanding the physics of such
protected Dirac fermions is a crucial step toward realizing MIT
in AFS.

To this end, two key symmetries are considered here:
the PT symmetry and nonsymmorphic symmetry. The PT
symmetry satisfies (PT )2 = −1 which guarantees at least
one degenerate state at high-symmetry momenta by Kramer’s
theorem. Due to the fact that the eigenstate and its PT
symmetric partner share the same momentum, the bands are
twofold degenerate in the entire BZ. These doubly degenerate
states are a prerequisite for the Dirac semimetal, as the Dirac
point is comprised of a combination of two doubly degenerate
Weyl points. However, in general, such crossing results in a
gap due to the level repulsion unless we introduce an additional
symmetry to stick [29] the bands together at the band crossing
point.

To expand our discussion on the role of this additional
symmetry, we assume an arbitrary Hamiltonian that respects
PT and an additional nonsymmorphic symmetry. The PT
symmetry satisfies (PT )2 = −1 and has eigenvalues of λ± =
±i. Unlike the PT symmetry, the nonsymmorphic symmetry
produces an extra phase factor in its eigenvalue due to the
partial translation of the lattice vector. We may see this addi-
tional phase factor by defining the glide mirror symmetry as
Gx = {Mx | 1

2 00} which is a combination of a mirror symmetry
followed by a translation of the real space coordinate as
(x,y,z) → (x + 1

2 ,y,z). In general, the glide mirror symmetry
Gx = {Mx |a} produces [29]G2

x = −T (2a‖) = −e−k·2a‖ , where

a is a fractional primitive translation lattice vector, a‖ is a
projection of a onto the mirror plane, T (x) is a translation
operator, and a minus sign appears due to the 2π rotation of
the spin. As a result, the eigenvalue for Gx is g± = ±ie−k·a‖

with an additional phase factor. In our example, a = ( 1
2 00) and

a‖ = (000), thus the eigenvalue for Gx becomes g± = ±i.
Having both PT and Gx operators defined, we wish to

examine the eigenvalue of the twofold degenerate states. If
twofold degenerate states share the same eigenvalue, we may
observe a protected Dirac point. To explain this, we first
assume the Bloch state |ψ+

k 〉 which is an eigenstate of Gx with
eigenvalue g+ = i. To be more explicit, we wish to evaluate
the eigenvalue of its degenerate partner, PT |ψ+

k 〉. We first
note that the real-space coordinate is transformed upon the
operation of the following sequence of the operators:

(x,y,z)
Gx−→ ( − x + 1

2 ,y,z
) PT−→ (

x − 1
2 , − y, − z

)
,

(x,y,z)
PT−→ (−x, − y, − z)

Gx−→ (
x + 1

2 , − y, − z
)
. (1)

In other words, GxPT = T (1,0,0)PT Gx = e−ikxPT Gx ,
where T is a translation operator. Then, the degenerate partner,
PT |ψ+

k 〉, satisfies [30]

Gx{PT |ψ+
k 〉} =e−ikx g−{PT |ψ+

k 〉}, (2)

where the extra phase factor is from GxPT = e−ikxPT Gx . At
k = (0,ky,kz), the degenerate states have different eigenvalues
for Gx (g+ for |ψ+

k 〉 and g− for PT |ψ+
k 〉). In this case, a

crossing with any other eigenstate either with g+ and g− causes
a level repulsion and thus the Dirac points are not protected
[18]. At k = (π,ky,kz), the degenerate states have the same
eigenvalue for Gx (g+ for both |ψ+

k 〉 andPT |ψ+
k 〉). As a result,

there is no level repulsion if a crossing occurs with another
degenerate state having an eigenvalue of g−. Therefore, the
Dirac point is protected at the edge of the BZ, or specifically
at kx = π in this example.

III. MODEL HAMILTONIAN

A. Tight-binding model in real space

To have insight on the low-energy Hamiltonian description,
we now construct an effective tight-binding model for the AFS
system. The model we consider here has a tetragonal primitive
structure whose lattice vector in 3D is defined as [20,29]
a1 = (100), a2 = (010), and a3 = (001). Figure 1(a) shows the
lattice structure which has two sublattice atoms labeled as A
and B, forming a bipartite square lattice in the x̂-ŷ plane. In
addition, Fig. 1(a) shows that the A and B atoms are buckled
in the opposite ẑ direction with a constant displacement ± c

2 ẑ

(0 < c < 1). The AF order exists by enforcing the opposite
spin direction for A and B sublattices. Such alternating spin
order in a bipartite lattice forms a Néel order and is aligned
with a unit vector defined as the Néel vector n̂. In this lattice
structure, T is broken by the magnetic order and P is broken
due to the bipartite square lattice with a staggered spin order.
However, the lattice preserves PT with an inversion center
indicated as a red dot in Fig. 1(a), and all bands have twofold
degeneracy in the entire Brillouin zone. In addition, the lattice
has additional nonsymmorphic symmetry that consists of a
mirror reflection symmetry followed by a half-lattice vector

134415-2



VOLTAGE-INDUCED SWITCHING OF AN … PHYSICAL REVIEW B 97, 134415 (2018)

FIG. 1. (a) A lattice structure consists of two sublattice atoms.
Two sublattice atoms are indicated as A and B having an opposite
spin configuration along the Néel vector n̂ (AF order) enforced by
the exchange coupling. (b) The lattice structure has nonsymmorphic
symmetry Gx for n̂||[100] and Gy for n̂||[010]. (c) The tight-binding
model intralayer and interlayer hopping parameters. (d) The intralayer
momentum dependent spin-orbit coupling parameter, λ. (e) The
interlayer momentum dependent spin-orbit coupling parameter, λz.

translation. Figure 1(b) shows the corresponding nonsymmor-
phic symmetries Gx = {Mx | 1

2 00} and Gy = {My |0 1
2 0} with

their mirror plane indicated with a dashed line.
The tight-binding Hamiltonian is [29]

H =
∑
〈ij〉

tij c
†
i cj +

∑
〈〈ij〉〉,〈l〉

c
†
i iλij (d̂il × d̂lj ) · σcj

+�
∑

i

ξic
†
i σ · n̂, (3)

where ci = (ci↑,ci↓)T is the electron annihilation operator at
site i located at r i , 〈ij 〉 indicates the hopping range from
nearest-neighbor to next-nearest neighbor sites with a cor-
responding hopping parameter tij . Figure 1(c) shows the
intraplane (txy) and interplane (tz) nearest-neighbor hopping
between A and B sublattices. Figure 1(c) also shows the intra-
plane (t ′xy) and interplane (t ′z) next nearest-neighbor hopping
between the same sublattices. The second term in Eq. (3) is the
next-nearest neighbor, or Kane-Mele k-dependent spin-orbit
coupling (SOC) [31,32]. In Eq. (3), σ = (σx,σy,σz) are the
Pauli matrices for spin degree of freedom, 〈〈ij 〉〉 are the indices
for the next-nearest neighbor atoms, d̂il = (ri − rl)/|ri − rl|
is a unit vector that connects the target atoms at i (or j ) with
the intermediate atom at l, located at the same distance from
the site i and j . Figures 1(d) and 1(e) depict the intra- and
interlayer SOC with SOC strength of λ and λz, respectively.
The last term in Eq. (3) is the staggered Zeeman term with
ξi = −1 for the sublattice A and ξi = 1 for the sublattice B. In
particular, we assume checkerboard Néel order and opposite
direction of the spin at A and B sites are aligned with the Néel
vector n̂.

B. Tight-binding model in momentum space

We Fourier transform the Hamiltonian in Eq. (3) into
momentum space to obtain [29]

H (k) = [txyτ1 + tz(τ1 cos kz + τ2 sin kz)] cos
kx

2
cos

ky

2
+ t ′xy(cos kx + cos ky) + t ′z cos kz + �τ3σ · n̂

+ (λ − λz cos kz)τ3(σ2 sin kx − σ1 sin ky), (4)

where τi=x,y,z and σi=x,y,z are the Pauli matrices for sublat-
tice and spin degree of freedom, respectively. Following the
parameters defined in Eq. (3), txy and t ′xy are the intralayer
nearest- and next-nearest-neighbor hopping parameter, tz and
t ′z are the interlayer nearest- and next-nearest-neighbor hopping
parameters, λ and λz are the intra- and interlayer SOC strength,
respectively, and � is the staggered Zeeman energy of the
AF order. We assume a layered structure, thus the hopping in
the interlayer direction is weaker than the intralayer direction
(txy � tz, t

′
xy � t ′z, and λ � λz).

When the Néel vector is aligned with the x̂ direction
(n̂||[100]), the Dirac points are protected by the gliding mirror
reflection symmetry Gx according to the discussions in Sec. II.
Given the Néel vector configuration (n̂||[100]), we now wish to
examine the relationship between SOC and the Zeeman energy
to determine the existence and the location of the protected
Dirac points at kx = π . To obtain a better understanding of the
phase diagram, we begin by examining the parameter range
of the λ and �, which allows the existence of the protected
Dirac points in our model Hamiltonian. By setting kx = π and
n̂||[100] in Eq. (4), the twofold degenerate energy spectrum is
obtained as

E±(π,ky,kz) = t ′xy(cos ky − 1) + t ′z cos kz

± (� − (λ − λz cos kz) sin ky). (5)

Equation (5) needs to satisfy � − (λ − λz cos kz) sin ky = 0
at the Dirac point, as a fourfold degeneracy is expected.
Equivalently, the Dirac points or Dirac nodal line (DNL)
may be found at momentum k = (π,ky,kz) which satisfies
sin ky = �/(λ − λz cos kz). In case of |�| < λ − λz, two ky1

and ky2 exist for a given kz1 thus we find two DNLs in the
kx = π plane. If λ − λz < |�| < λ + λz, one finds ky1 and ky2

within a specific range of kz1 that satisfies |�| < λ − λz cos kz1

and, as a result, we find one DNL in the kx = π plane. Lastly,
the spectrum is fully gapped when |�| > λ + λz. In summary,
the conditions between the SOC strength λ, and the Zeeman
energy �, are as follows:

|�| < λ − λz → two DNLs

λ − λz < |�| < λ + λz → one DNL

|�| > λ + λz → fully gapped. (6)

As we now know the conditions for finding the Dirac points,
let us obtain a low-energy effective model near the Dirac point
to explicitly show that the Dirac point is protected by the
nonsymmorphic symmetry [29] Gx . Assuming that a Dirac
point is located at k1 = (π,ky1,kz1), the low-energy effective
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FIG. 2. (a) The eigenvalue spectrum of the Hamiltonian in Eq. (4). We use txy = t = 0.5 eV, tz = 0.5t, t ′
xy = 0.1t, t ′

z = 0.1t, λ = 0.5t, λz =
0.1t , and � = 0.3t . We plot the spectrum for three different Néel vector alignments n̂||[100] (black solid line), n̂||[110] (blue dashed line), and
n̂||[001] (red dotted line). (b) The eigenvalue spectrum of the Hamiltonian with the same parameter choices as in (a) but with different exchange
coupling energy �. The black solid line has � = 0.3t < λ − λz, which has two DNLs at the kx = π plane as is shown in the right upper side
inset. The blue dotted line has λ − λz < � = 0.3t < λ + λz, having one DNL at the kx = π plane. As a result, the X-M line shows a gapped
spectrum. The gray dashed line has � > λ + λz and the spectrum is fully gapped by the exchange energy although the gliding symmetry Gx is
preserved.

model is [29]

H (k1 + q) = (vx1τ1 + vx2τ2 + vx3τ3σ2)qx

+ (vyqy + vzqz)τ3σ1, (7)

where q = (qx,qy,qz) is a small deviation from k1, and
vx1, vx2, vx3, vy, vz are obtained from Eq. (4) and details of
the calculation is given in Appendix A. In Eq. (7), we clearly
observe a linear dispersion near q = 0. In the presence of PT
symmetry, PT = iτ1σ2K, the allowed Gamma matrices that
satisfy [PT ,	] = 0 are � = (τ1,τ2,τ3σ1,τ3σ2,τ3σ3) [18,29].
Among the available Gamma matrices, we may introduce τ3σ3

to gap out the spectrum of the Hamiltonian in Eq. (7). However,
such terms are forbidden by the gliding mirror reflection
symmetry Gx = iτ3σ1 and, therefore, the Dirac points are
protected by the additional nonsymmorphic symmetry Gx .
Once the Néel vector deviates from [100],Gx is broken and the
low-energy effective model develops a gap with a magnitude
proportional to the staggered Zeeman energy � following the
details in Appendix A. To make a clear distinction between
gapless and gapped energy spectra, a large Zeeman energy
� is desirable. However, we find in Eq. (6) that the Zeeman
energy needs to be smaller than the SOC strength to ensure the
existence of the Dirac points. Therefore, our model requires
a strong SOC to ensure the Dirac points while a Zeeman
energy comparable to the SOC strength is desirable for a clear
distinction between gapped and gapless phase.

We now confirm the above-mentioned analysis by numeri-
cally evaluating the tight-binding Hamiltonian in Eq. (4). First
of all, we examine the eigenvalue spectrum for different Néel
vector configurations to observe symmetry protected Dirac
points and corresponding gapless phase. Figure 2(a) shows
the eigenvalue spectrum with the following set of param-
eters: txy = t = 0.5 eV, tz = 0.5t, t ′xy = 0.1t, t ′z = 0.1t, λ =
0.5t, λz = 0.1t , and � = 0.3t . We choose these parameters
to ensure two DNLs in the system and a clear gap exists
when nonsymmorphic symmetry is broken. The eigenvalue
spectrum is plotted for the three different Néel vector config-
urations, which are the n̂||[100] (black solid line), n̂||[110]
(blue dashed line), and n̂||[001] (red dotted line). Among the
three different configurations, the n̂||[100] (black solid line)
configuration preserves Gx and the Dirac points are protected

by the nonsymmorphic symmetry at kx = π along X-M and
R-L lines. Similarly, the n̂||[010] configuration also preserves
Gy , and the Dirac points are protected along ky = π , but it is not
shown here. Otherwise, the Dirac points are gapped as shown
in the n̂||[110] and n̂||[001] configurations in Fig. 2(a). In
addition, we vary the staggered Zeeman energy � to examine
the number of allowed DNLs according to the conditions in
Eq. (6). Figure 2(b) shows the eigenvalue spectrum with the
same parameters used in Fig. 2(a) with n̂||[100], but different
staggered Zeeman energy �. The black solid line shows the
system parameters with� = 0.3t , which satisfies the condition
� < λ − λz. As previously discussed in Eq. (6), two DNLs
exist for this parameter and, consequently, Fig. 2(c) shows two
dispersive DNLs in k̂y-k̂z plane at kx = π , which both cross
X-M and R-L lines. The blue dotted line in Fig. 2(b) depicts
the spectrum with � = 0.5t , where the parameters satisfy the
condition λ − λz < � < λ + λz and the system has one DNL.
Figure 2(d) clearly shows one DNL which crosses the R-L line,
but not the X-M line. The gray dashed line in Fig. 2(b) has
parameter � = 1.0t which satisfies � > λ + λz. Therefore,
the spectrum is fully gapped and the system has no Dirac points
even though Gx is not broken.

IV. MAGNETIC ANISOTROPY ENERGY IN
ANTIFERROMAGNETIC DIRAC SEMIMETAL

With an established model, we now wish to explore the
effects of electrostatic gating on the resultant magnetization of
the AFS. In the following sections, we analyze the underlying
physics of the voltage driven Néel vector manipulation.

A. Free energy analysis

Voltage induced magnetic order control has been proposed
in a 3D topological insulator-ferromagnetic insulator (TI-FI)
hybrid system [26]. In a TI-FI hybrid system, a finite magnitude
of exchange energy is induced by the proximity effect at the
surface of the TI. In this case, the electronic structure of the
TI surface state may be affected by the induced magnetic
order. When the magnetic order in FI is perpendicular to the
TI surface, the induced exchange energy causes an energy
gap in TI surface states. In contrast, the surface state is still
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FIG. 3. (a) A schematic eigenvalue spectrum near the Dirac point.
The left hand side shows the gapless phase whose Dirac point is
protected by the Gx . The right hand side shows the gapped spectrum
due to the broken gliding symmetry. The filled circle describes the
filled electronic states and the chemical potential is located at the Dirac
point μD . (b) The same plot as (a), but the chemical potential is away
from the Dirac point by δμ. The gapless phase has additional electron
filling indicated by patterned red circles, which provide additional
negative energy and lower the total free energy.

gapless if the magnetic order of FI is parallel to the TI surface
[33]. In this case, the induced exchange coupling merely shifts
the Dirac point of the TI surface state in momentum space.
The perpendicular and parallel configuration of the magnetic
order results in a gapped and gapless electronic state, making
a difference in the total energy of the system.

Similarly, the electronic structure of AFS is gapless when
the Néel vector is parallel to the mirror reflection symmetry
axis (e.g., n̂||[100]), whereas the spectrum is gapped when
the Néel vector is tilted away from the symmetry axis (e.g.,
n̂||[001]). To determine the preferred configuration, we evalu-
ate the free energy of the system. In other words, we assume
that the magnetic easy-axis is aligned with the Néel vector
orientation that minimizes the electron free energy for a given
AFS system [26]. The Helmholtz free energy, F , for fermions
is [34]

F (ϕ,θ,μ)

V
= − 1

β

1

(2π )3

∑
i

∫
d3k ln(1 + eβ[μ−Ek,i (ϕ,θ)]),

(8)

where β = 1/kBT , T is temperature, kB is Boltzmann con-
stant, Ek,i(ϕ,θ ) is the eigenvalue of the ith band at k when
the Néel vector is n̂ = (cos ϕ cos θ, sin ϕ cos θ, sin θ ) with
in-plane (ϕ) and out-of-plane (θ ) angle, μ is the chemical
potential, and V is the volume of the system (see Appendix B
for the derivation).

We are particularly interested in the free energy difference
between various Néel vector orientations and the correspond-
ing AFS eigenvalue spectrum. Figures 3(a) and 3(b) show
the schematics of the spectrum for two different Néel vector
configurations: n̂||[100] (or θ = 0 and ϕ = 0, gapless) and
n̂||[001] (θ = π

2 , gapped). In each of these figures, the filled
circles indicate the filled electronic states. When the chemical
potential is located at the Dirac point μD , as in Fig. 3(a),
the gapped spectrum has lower total energy and, according to
Eq. (8), lower free energy. Therefore, n̂||[001] configuration
is preferred. However, as the chemical potential moves away
from the Dirac point by δμ > 0, more electronic states are filled
for gapless spectrum, as shown in Fig. 3(b). The additional
filling of these electronic states lowers the free energy for
gapless spectrum mitigating the initial free energy difference.

When the chemical potential is closer to the valence band
(δμ < 0), the overall increase in valence band electron energy
compensates the initial free energy difference between the
two configurations. Although gapped spectrum is preferred
when the chemical potential is located at the Dirac point, the
energy difference that favors one phase may become less as the
chemical potential moves away from the Dirac point. A similar
trend has been found in ferromagnetic material proximity
coupled to the graphene [25] and TI surface states [26,27].

B. Intrinsic anisotropy energy and the chemical potential
induced Néel vector switching

To examine the scenario described above, we define the
intrinsic anisotropy energy [26] of the system as

Ki(ϕ,θ,μ) = F (ϕ,θ,μ) − F (0,0,μ)

V
, (9)

and numerically find n̂ which minimizes Ki(ϕ,θ,μ). We solve
the free energy by using the tight-binding Hamiltonian in
Eq. (4) with the parameters used in Fig. 2(a). We vary both
in-plane (ϕ) and out-of-plane (θ ) angle of the Néel vector. The
result shows no substantial change for different temperature
T , unless T is comparable to the energy gap of the gapped
phase smearing out the energy difference between gapped
and gapless phase. From Fig. 2(a), we observe that n̂||[001]
shows the energy gap of Eg 
 0.2 eV, whereas n̂||[110] has
Eg 
 0.12 eV. Therefore, the results are insensitive to the range
of temperature from T = 2 K to T = 300 K. We then obtain
the anisotropy energy by evaluating Eqs. (8) and (10). When
the chemical potential is located near the Dirac points (μ 
 0),
the gapped spectrum shows lower free energy. Thus, the system
prefers the Néel vector configuration n̂||[001] that induces the
largest gap in spectrum. Figure 4(a) quantitatively describes
such a trend where we plot the anisotropy energy Ki(0, π

2 ,μ),
as a function of chemical potential. For simplicity in notation,
we define

Ki(μ) ≡ Ki

(
0,

π

2
,μ

)
, (10)

which measures the free energy difference between maximally
gapped (n̂||[001] or θ = π

2 ) and gapless (n̂||[100] or θ = 0 and
ϕ = 0) phase, and we omit (ϕ,θ ) = (0, π

2 ) for notational sim-
plicity unless otherwise mentioned. As we move the chemical
potential toward the conduction band from the Dirac point, gap-
less spectrum may facilitate more filled states whereas gapped
spectrum has no additional occupations in the zero temperature
limit. The additional filled states in the gapless spectrum further
lower the free energy, reducing the initial free energy difference
Ki(μ). After the chemical potential crosses the energy gap,
the sign of the anisotropy energy is reversed and n̂||[100] is
preferred. To analyze the results in more detail, we sample
four different points from Fig. 4(a) and plot the free energy
landscape for ϕ ∈ [0,π/2] and θ ∈ [0,π/2] in Figs. 4(b)–4(e).
In the contour plot, a larger (smaller) value of Ki is indicated
as light yellow (dark red) color. The x̂-ŷ axis represents the
out-of-plane angle θ , whereas the radial angle represents the
in-plane angle ϕ. Figure 4(b) shows that the free energy minima
occur at θ = π

2 . The anisotropy energy magnitude is decreased
but still shows the same minima in Fig. 4(c). Further increase
in chemical potential eventually changes the global minima
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FIG. 4. (a) The anisotropy energy Ki as a function of the chemical
potential μ. Ki measures the free energy difference between n̂||[001]
and n̂||[100] configuration. When the Ki is negative value, the system
prefers n̂||[001] configuration (gapped) whereas the preferred Néel
vector configuration is n̂||[100] for the system with positive Ki . Ki is
calculated for T = 2 K (black solid line) and T = 300 K (red dotted
line). The black dot shows the sampling point of the anisotropy energy
landscape shown in (b)–(e). (b) The anisotropy energy landscape for
ϕ ∈ [0,π/2] and θ ∈ [0,π/2] at μ 
 −0.045 eV. (c) Similar plot as
(b) at μ 
 0.135 eV, (d) μ 
 0.225 eV, and (e) μ 
 0.45 eV. The blue
arrow indicates the global minimum points.

from θ = π/2 to θ = 0 as it is shown in Fig. 4(d). Note
that the global minima is still in the gapped phase, but with
a smaller gap at ϕ = π/4, or n̂||[110]. Eventually, Fig. 4(e)
shows that the global minima is located along the x̂ (ϕ = 0)
or ŷ (ϕ = π/2) axis as we further tune the chemical potential
away from the Dirac point. In summary, Figs. 4(b)–4(e) show
a gradual change of the preferred Néel vector configuration
from n̂ that gives us a maximally gapped spectrum to gapless
spectrum via manipulation of the chemical potential.

C. Intrinsic anisotropy energy dependency on the model
Hamiltonian parameters

In Sec. IV B, we examine the intrinsic anisotropy energy as
a function of the chemical potential and observe the voltage-

μ ( ) ~ii Eμ

( )i Eμ <

( )iii Eμ >

E(a)

μ

E
m

ckFk
Fkδ

k

(b)

0

FIG. 5. (a) The three regions of interest for linearizing the free
energy in Eq. (11). Assuming the zero-temperature limit, we divide
the region when the energy of interest is in (i) β(μ − E)  −1, (ii)
β|μ − E|  1, and (iii) β(μ − E) � 1. (b) A schematics of the low-
energy Dirac fermion with an isotropic Fermi velocity. The Dirac point
is located at E = 0. The solid line shows the gapless, linear dispersion
of the massless Dirac fermion. The dashed line depicts the gapped
spectrum of the massive Dirac fermion with a mass term m. The
shaded region indicates the region where β|μ − E|  1 condition is
satisfied and the corresponding momentum range is kF − δkF < k <

kF + δkF .

induced Néel vector switching. However, it is unclear how
the specific magnitude of Ki and the decreasing rate of its
magnitude are determined. In this regard, we linearize Eq. (8)
and perform a closer analysis on the free energy to analyze
parametric dependencies of Ki . The free energy in Eq. (8) is
rewritten using F/V ∝ ∑

i

∫
d3kfk,i where

fk,i = − 1

β
ln(1 + eβ(μ−Ek,i )). (11)

Equation (11) shows the individual eigenstate contribution to
the free energy, which may be linearized in zero-temperature
limit T → 0, or β → ∞. Specifically, we consider the three
different energy ranges shown in Fig. 5(a). The linearized fi,k
for each of the three energy ranges are derived in Appendix C
in the zero-temperature limit, and we summarize the results as
follows:

fk,i 

⎧⎨
⎩

0 if μ < Ek,i ,

−(μ − Ek,i)/2 if μ ∼ Ek,i ,

−(μ − Ek,i) if μ > Ek,i .

(12)

To proceed, we consider eigenstates of the 3D Dirac fermions
by using a massive, isotropic Dirac Hamiltonian. The eigen-
states of such a Hamiltonian are Ek,1 = −

√
(vF k)2 + m2 for

the valence band and Ek,2 =
√

(vF k)2 + m2 for the conduction
band, where we set h̄ = 1,m is the mass term, and vF is the
isotropic Fermi velocity. To simplify our analysis, we ignore
the twofold degeneracy of the Dirac Hamiltonian, but the below
analysis is physically valid, as degeneracy plays no role but
simply adds a factor of two to the total free energy. We restrict
the location of the chemical potential within the gap of the
gapped phase, as it gives a simple yet useful solution to examine
the free energy change as a function of the chemical potential
deviation from the Dirac point.

We first compute the free energy of the gapless phase
(m = 0) for μ � 0 by solving Eq. (8) in conjunction with
Eq. (12). Figure 5(b) depicts a particular momentum cut of the
massless (solid line) and massive (dashed line) Dirac fermion
dispersions. The shaded region in Fig. 5(b) shows a range
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of energy that is close to the chemical potential and satisfies
fi,k 
 −(μ − Ei,k)/2 in Eq. (12). Then, we obtain the free
energy by integrating over the relevant energy range as

F (m = 0)

V
∝ −

∫ kc

0
k2dk(μ + vF k)

−
∫ kF −δkF

0
k2dk(μ − vF k)

−
∫ kF +δkF

kF −δkF

k2dk
μ − vF k

2
, (13)

where we assume that the low-energy Dirac Hamiltonian is
a valid description for k � kc with an arbitrary cutoff wave
vector kc, and δk is an infinitesimally small deviation from
the Fermi wave vector kF = μ/vF . In Eq. (13), the first term
accounts for the filled states in the valence band, the second
term considers the filled states in the conduction band, and the
last term includes the states near the Fermi level, where δkF is
determined by the temperature. In the zero-temperature limit,
δkF → 0 and Eq. (13) becomes

F (m = 0)

V
∝ −

(
μ

3
+ vF kc

4

)
k3
c − 1

12

μ4

v3
F

. (14)

We now consider the free energy of the gapped phase with a
mass term m for 0 � μ < m. The free energy is

F (m)

V
∝ −

∫ kc

0
k2dk(μ +

√
(vF k)2 + m2), (15)

as we only need to consider the filled states in the valence band.
Here, we assume that our cutoff wave vector is sufficiently large
satisfying vF kc � m. In this case, x = vF kc/m � 1 and we
use the limit of the integration

∫ x

0 dx ′x ′2
√

x ′2 + 1 
 x4/4 +
x2/4 for x → ∞ to evaluate Eq. (15). As a result, we obtain

F (m)

V
∝ −

(
μ

3
+ vF kc

4

)
k3
c − m2

4vF

k2
c . (16)

Finally, we obtain the zero-temperature limit intrinsic
anisotropy energy by using the definition in Eq. (10) as follows:

Ki(μ) = F (m) − F (m = 0)

V

∝ − 1

4v3
F

(
m2(vF kc)2 − μ4

3

)
. (17)

Following the same procedures outlined in Eqs. (13)–(17), we
obtain identical results for −m < μ � 0. Therefore, Eq. (17) is
valid for −m < μ < m in the zero-temperature limit. Equation
(17) shows that the magnitude of the intrinsic anisotropy is
proportional to m2 and inversely proportional to vF at μ = 0.
In other words, a large m and small vF is desirable to maximize
the intrinsic anisotropy energy. For an increasing μ, small mvF

is favorable to have a rapid decrease in the magnitude of the
Ki . This may result in a sign change of the Ki and induce
a switching of the preferred Néel vector orientation. For this
reason, a large gap m and a small Fermi velocity vF is desirable
to realize the voltage driven Néel vector switching.

FIG. 6. (a) The intrinsic anisotropy energy Ki at μ = 0 as a
function of the Zeeman energy �. The dotted line shows a quadratic
fitting showing a good agreement with Eq. (18). (b) Ki at μ = 0 as
a function of the SOC strength λ. The dotted line shows a quadratic
fitting and dashed line shows a fitting curve with 1/λ. The two distinct
limit shows the dependence of Ki on λ as it is discussed in Eq. (20).
(c) Ki as a function of the chemical potential μ for various λ. The
green line represents a small vF limit, or small λ limit whose size is
comparable to �. The red line represents a large vF limit, or large λ

limit.

We now wish to analyze how the low-energy Dirac fermion
parameters, m and vF , are expressed in terms of the parameters
in our model Hamiltonian. To this end, we first consider the
low-energy Hamiltonian near the Dirac point. In Sec. III B,
we find that the energy gap of the low-energy Hamiltonian
is proportional to the staggered Zeeman energy �. There-
fore, the mass term of the Dirac fermion is proportional to
the Zeeman energy, or m ∝ �. According to Eq. (17), the
intrinsic anisotropy energy satisfies Ki(0) ∝ −m2 and, as a
result,

Ki(0) ∝ −�2, (18)

for a fixed Fermi velocity vF . To numerically show such
dependency, we obtain Ki(0) by evaluating Eq. (10) using the
same parameters in Fig. 2(a), but we set the second-nearest
neighbor hopping to zero, or t ′xy = t ′z = 0, in order to locate
the Dirac points at E = 0. To evaluate the anisotropy energy
in the zero-temperature limit, we set the temperature T = 2 K.
Figure 6(a) shows Ki(0) as a function of � from 300 meV to
5 meV, and the dashed line is a quadratic fitting of the numerical
results showing that the intrinsic anisotropy energy satisfies
Eq. (18). As a result, we may increase the intrinsic anisotropy
energy Ki by introducing a large Zeeman energy. This is due
to the fact that Ki is proportional to the difference between
the total energy of the gapped and gapless spectrum, which is
determined by the size of the gap.

For a fixed Zeeman energy, Eq. (17) shows that Ki(0) is
inversely proportional to the Fermi velocity vF . Thus we wish
to identify a relevant parameter within our model Hamiltonian
that corresponds to vF . To this end, we examine the low-energy
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spectrum of Eq. (7),

E(k1 + q) = ±
√

v2
xq

2
x + (vyqy + vzqz)2, (19)

where v2
x =

√
v2

x1 + v2
x2 + v2

x3, and vx1,vx2,vx3,vy,vz are given
in Eq. (A2). Assuming that spin-orbit strength of the
layered structure is dominantly determined by the in-
plane spin-orbit coupling strength λ, we further simplify
Eq. (19) by ignoring λz, or setting λz = 0. Equation (19)

is then simplified as E(k1 + q) = ±
√
v2

xqx + v2
yq

2
y , where

v2
x = v2

x12 + λ2 with v2
x12 = v2

x1 + v2
x2 = 1+cos ky0

8 (t2
xy + t2

z +
2txy tz cos kz0), vy = −λ cos ky0, and sin ky0 = �/λ. In the
large SOC limit, or λ � {�,txy,tz}, v2

x = v2
y 
 λ2 and the

low-energy spectrum followsE 
 ±λ
√
q2

x + q2
y with the Fermi

velocity vF 
 λ. Note that the Dirac points exist when λ �
� according to Eq. (6). Therefore, the smallest λ we may
consider is λ ∼ �. In this limit, cos ky0 =

√
1 − (�/λ)2
0 and

vy = −λ cos ky0 
 0. Then the low-energy spectrum becomes

E 
 vxqx with the Fermi velocity vF = vx =
√

v2
x12 + λ2. By

considering the above mentioned relationship between vF and
λ, we show the Ki(0) dependency on λ for two different limits
as follows:

Ki(0) ∝ − 1

vF



{

− 1
vx


 − 1
vx12

+ 1
2v3

x12
λ2 if λ ∼ � and λ  vx12,

− 1
λ

if λ � {vx12,�},
(20)

for a fixed Zeeman energy �, and λz = 0. We numerically
verify Eq. (20) by evaluating the intrinsic anisotropy energy
of the model Hamiltonian using Eq. (10). We use the same
parameters as used in Fig. 2(a) but here set λz = 0 following
the assumption made in Eq. (20), and set t ′xy = t ′z = 0 to locate
all the Dirac points at E = 0. Figure 6(b) shows Ki(0) as a
function of λ from 0.25 eV to 0.8 eV. Note that vx12 
 0.375 eV
is the maximum value of vx12, thus we expect to see Ki(0) ∝ λ2

near 0.25 eV (dotted line) and Ki(0) ∝ −1/λ near 0.8 eV
(dashed line). Consequently, the overall trend shows that Ki(0)
is a decreasing function for increasing λ, and this is due to the
fact that λ sets the Fermi velocity in our model. The linear dis-
persion of the low-energy Dirac fermions possesses a steeper
slope for larger vF and, therefore, there are few available states
for a given range of energy. The reduced number of filled states
results in a smaller free energy difference between gapped and
gapless phase, or smaller Ki(0).

The above scenario is directly related to the behavior of
Ki as a function of the chemical potential change. As we
increase the chemical potential from the Dirac point, more
states are filled for the gapless phase lowering the total free
energy while the number of filled states remain the same for
the gapped phase. If we increase vF , the slope of the linear
dispersion becomes steeper and the density of states become
smaller. Then fewer states are included upon an increase of
the chemical potential and, as a result, a change in the total
free energy for gapless phase becomes smaller. This trend is
not desirable as we wish to observe a rapid decrease in the

total free energy of the gapless phase as we increase μ in order
to realize a switching of the preferred spectrum from gapped
to gapless. In this regard, small Fermi velocity is preferred
and, equivalently, small SOC strength λ is desirable. Note
that λ still needs to be larger than � in order to ensure the
existence of the symmetry protected Dirac points according to
Eq. (6), therefore, the smallest possible SOC strength is λ ∼ �.
Figure 6(c) shows the calculated Ki(μ) as a function of μ using
the same parameters in Fig. 6(b). Ki shows a clear sign change
at μ 
 0.17 eV for λ = 0.25 eV, which corresponds to a small
vF limit. By contrast, we no longer observe a sign change
in Ki(μ) for λ = 0.8 eV within a given range of μ, which
corresponds to the large vF limit.

D. Intrinsic anisotropy energy in orthorhombic CuMnAs

In our model, we considered the low-energy Hamiltonian
which only captures the eigenvalues near the Fermi level. In
addition, our model only contains symmetry protected Dirac
fermions whose gapped and gapless phase are governed by
the Néel vector orientation. However, in a realistic material,
multiple bands are available, and the system may have acci-
dental crossings of the bands, which are not protected, thus
possess an arbitrary gap size. To address this, we examine the
intrinsic anisotropy energy of a realistic material using density
functional theory (DFT).

We consider orthorhombic CuMnAs, which is known to
be an AFS possessing Dirac fermions located near the Fermi
level [18,20]. We relax all atomic positions and the unit
cell using a 	-centered 8 × 16 × 8 k-point grid. The resulting
relaxed lattice parameters are a = 6.439Å, b = 3.800Å, and
c = 7.292Å. In this system, the Dirac points are protected by
the nonsymmorphic twofold screw symmetry along the z axis,
S2z, at kx = π/a plane. Before the calculation takes account
for SOC, the spectrum possesses Dirac nodal lines on the
ky = 0 plane [18] whose high-symmetry points are indicated
in Fig. 7(a). When SOC is included, the spectrum is gapped
out and massive Dirac fermions are found along the 	-X,X-U ,
and Z-X lines [18,20]. When the Néel vector is aligned with
[001], the S2z symmetry is respected and the protected Dirac
point is found in the X-U line.

We first focus on the Dirac point located at X-U line
by using 30 × 30 uniform grid for a limited range of k

space of 0.45(2π/a) � kx � 0.5(2π/a) and 0.45(2π/c) �
kz � 0.5(2π/c) at ky = 0. We self-consistently obtain charge
density of orthorhombic CuMnAs using a 22 × 44 × 22 uni-
formly sampled k grid and perform DFT calculation on
30 × 30 uniform grid to obtain detailed eigenvalue spectrum
near the Dirac cone. DFT calculations with the projector-
augmented wave (PAW) method for orthorhombic CuMnAs
are implemented by Vienna ab initio simulation package
(VASP) [35]. A plane-wave kinetic cutoff is selected as 600 eV
to obtain a convergence of the results. The generalized-gradient
approximation by Perdew, Burke, and Ernzerhof (PBE) [36]
is used to describe exchange and correlation. The obtained
eigenvalues capture the realistic description on the Dirac
fermions near the Fermi energy. The red (dark) surface plot in
Fig. 7(b) clearly shows the protected Dirac point at kx = π/a

plane for n||[001]. In the presence of SOC, S2z is broken for
other Néel vector configurations. Among other possible Néel
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FIG. 7. (a) The Brillouin zone of orthorhombic CuMnAs at ky = 0. (b) The eigenvalue spectrum obtained from DFT calculation near
the protected Dirac point. The red plot represents the spectrum obtained from n̂||[001] configuration, which clearly shows the Dirac point at
kx = π/a. The gray plot shows the gapped spectrum in n̂||[100] configuration. (c) A plot of the intrinsic anisotropy energy Ki , calculated
by using DFT results. The Ki is calculated using Eq. (9) using dk3 = (2π )2/(abc) where the lattice constants in x, y, z are a = 6.439Å,
b = 3.800Å, c = 7.292Å, respectively.

vector configurations, previous calculation [20] shows that
n||[100] is the ground state of the system. For this particular
Néel vector configuration, the spectrum is fully gapped having
an energy gap of Eg 
 26.5 meV along the X-U line as shown
in the gray surface plot in Fig. 7(b). We then compute the
intrinsic anisotropy energy, Ki,DFT, by using the eigenvalues
obtained from DFT results for a given 30 × 30 kx-kz grid.
Specifically, we calculate

Ki,DFT(μ) = Fn||[100](μ) − Fn||[001](μ)

V
, (21)

where Fn||[001](μ) and Fn||[100](μ) are the free energy obtained
by Eq. (8) for n||[001] and n||[100] configuration, respectively.
We set T = 2 K when we compute the Ki,DFT and we assume an
identical initial Fermi level for both Néel vector configurations.
Figure 7(c) shows the calculated intrinsic anisotropy energy,
and the gapped phase is initially preferred (n̂||[100]) at μ = 0
eV. Ki,DFT shows a clear decrease in its magnitude as the
chemical potential deviates from the Dirac point. In fact,
the energy difference between gapped and gapless phase
is maintained in a wider range of k space away from our
30 × 30 kx-kz grid near the Dirac point, thus the magnitude of
Ki,DFT is expected to be larger than our results. In other words,
we effectively limit our cutoff momentum, kc, in Eq. (17)
and, consequently, underestimate Ki,DFT. In addition, we may
find larger Ki,DFT by considering a material having a larger
energy gap for the gapped phase, as we discussed in Sec. IV C.
Nevertheless, we observe a clear decrease in the anisotropy
energy for an increasing chemical potential deviation from the
Dirac point, and the overall behavior of the Ki,DFT is consistent
with that of our tight-binding model in Sec. IV B.

To determine the preferred Néel vector configuration of
CuMnAs, we may now perform DFT calculation for the entire
Brillouin zone and obtain converged total energy. The result
shows the total energy difference of Etot,n̂||[100] − Etot,n̂||[001] 

−0.38 meV per unit cell, thereby we obtain the gapped
spectrum as a ground state spectrum of the material. The result
agrees with the previous DFT results [20] as well as the recent
transport measurements where the massive Dirac fermions
have been identified in orthorhombic CuMnAs [37,38]. How-

ever, it is uncertain at this point that our argument in Sec. IV A
may play a major role in determining the ground state con-
figuration of the Néel vector, as the realistic band structure is
complicated. For example, the system may possess accidental
linear crossings of the bands which are not protected by any
underlying symmetries. In such cases, those particular Dirac
fermions acquire a gap for an arbitrary Néel vector orientation
but its size may not be correlated with the Néel vector. It
has been shown that multiple Dirac cones exist along the
	-X,X-U , and Z-X lines in orthorhombic CuMnAs [18,20].
Among them, no nonsymmorphic symmetry protects the Dirac
points in 	-X and Z-X lines. Therefore, in the presence of
SOC, the Dirac cone acquires a mass term both for the n̂||[100]
and n̂||[001] configurations [18]. However, the Dirac cones
along the 	-X and Z-X lines show [20] larger energy gap for
n̂||[001] than n̂||[100], whereas the Dirac cone in X-U line
possesses larger size energy gap for n̂||[100] than n̂||[001].
Due to this opposite trend in energy gap for Néel vector
configurations, we may expect a different contribution of each
Dirac cone on anisotropy energy. As a result, Ki,DFT may show
different qualitative behavior from Fig. 7(c) once the whole
BZ is properly considered. Therefore, more comprehensive
calculation needs to be done with carefully chosen k grid which
samples enough points to identify each of the Dirac cones in
order to estimate a quantitative behavior of Ki,DFT(μ) for the
realistic material.

V. TWO TERMINAL CONDUCTANCE MEASUREMENT

While it is evident that manipulating the chemical potential
changes the orientation of the Néel vector, thereby driving a
topological MIT, the experimental signature of the transition
is not yet clear. In light of this, we now explain the signature
observed in a two terminal quantum transport measurement
within an AFS. Figure 8(a) shows the schematics of the
AFS which is indirectly coupled to a top gate to control
the chemical potential, and directly connected to the metallic
contacts to measure a current across the AFS. However, the
conductance alone may not be sufficient to identify the phase
of the material. Assuming that the bulk chemical potential
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FIG. 8. (a) A schematic of the thin slab resistance measurement
setup. The AFS material (middle, light gray) is indirectly coupled to
the gate, which controls the chemical potential. The contact is directly
coupled to the left and right hand side of the AFS and we use wide band
limit (WBL) approximation for the metallic contact self-energy. The
ferromagnetic insulator (FI) is coupled to the bottom of the AFS and
we assume an interface exchange coupling. The net magnetization
of the FI is aligned in the in-plane direction. (b) The inset shows
the anisotropy energy as a function of θ for fixed ϕ = 0 when the
chemical potential is located at (a) and (e) in Fig. 4(a). The dashed
line shows the fit using sin2 θ . (c),(d) Schematics of AFS (light gray)
proximity coupled with FI (dark gray). The net magnetization of FI
may be changed by applying external field H.

is initially at the Dirac point, we may go across the phase
transition from insulating to metallic phase as we manipulate
the gate voltage. Considering that the phase change occurs near
the band edge of the insulating phase, it is unclear whether
the increase in conductance is due to the phase transition to
the metallic phase or an inclusion of the conduction band
edge of the insulating phase. For this reason, we introduce an
additional anisotropy energy in the AFS system via exchange
coupling with a ferromagnetic insulator (FI). Such induced
anisotropy, often referred to as the exchange spring effect, has
been investigated for the antiferromagnetic system coupled
to the ferromagnetic material [18,39]. The exchange spring
effect allows the external magnetic field to reorient the axis of
the induced anisotropy energy, which serves as an additional
knob to modify the critical chemical potential at which the
phase transition occurs. Note that the coupling of FI may
introduce a PT symmetry breaking term at the interface of the
AFS-FI system. Although the (semi)metal-insulator transition
may still occur in the presence of PT symmetry breaking
terms, the detailed changes in spectrum may be worthwhile
to examine as we may have Weyl fermions instead of Dirac
fermions in the AFS system [19]. However, as our goal is
to examine a role of additional anisotropy energy introduced
by FI, we ignore any PT symmetry breaking term in our
analysis.

Figure 8(b) shows the anisotropy energy near μ = 0.045 eV
and at μ = 0.45 eV with the same parameter choices as in
Fig. 4(a). The uniaxial anisotropy energy is often fitted by
sin2 θ , which is the lowest order approximation in the angle
θ between the magnetic order and magnetic easy axis [40].
In Fig. 8(b), the symbols show the numerical calculation and
solid lines show an analytical fit using sin2 θ , which shows
good agreement with numerical results. Using the analytical
fit, the intrinsic anisotropy energy is written as

Ki(ϕ,θ,μ) = −Keff (μ) sin2 θ, (22)

where Keff (μ) = −Ki(0, π
2 ,μ) is plotted in Fig. 4(a). As we

observe in Figs. 4(b)–4(e), the anisotropy energy is uniformly
distributed over the in-plane angle direction. Although we
observe ϕ dependency of the anisotropy energy near the critical
μ, the difference is much smaller than the difference between
in-plane and out-of-plane configurations. Therefore, we ignore
the ϕ dependency of the Ki in Eq. (22) for simplicity. In the
absence of any other additional anisotropy energy, the easy axis
is in the ẑ direction when the chemical potential is initially set
to μ = 0. However, the Keff (μ) decreases in magnitude, as
shown in Fig. 4(a), until Keff (μc) = 0 at the critical chemical
potential μc. When the chemical potential is further increased,
the intrinsic anisotropy energy flips its sign and easy axis
becomes the in-plane direction (e.g., [100] direction).

Although the critical chemical potential μc is determined by
the intrinsic band structure of the material, we may alter μc by
introducing an additional anisotropy energy. In this regard, we
now consider the interface exchange coupling energy from the
presence of a FI. We assume that the AFS system is exchange
coupled to a FI whose net magnetization direction is defined
as m̂. To depict the impact of the exchange coupling on μc, we
examine two orientations of m̂: out-of-plane direction m̂ =
(001) and in-plane direction m̂ = (100) as shown in Figs. 8(c)
and 8(d), respectively. Each configuration may be realized by
applying external magnetic field, denoted as H in Figs. 8(c)
and 8(d), along the in-plane and out-of-plane directions.
The exchange coupling introduces an additional anisotropy
energy [39]

Kex(m̂,n̂) = −Jexm̂ · n̂, (23)

where Jex is the interface exchange coupling energy. When
m̂ = (001), the easy axis of the exchange coupling anisotropy
energy coincides with that of the intrinsic anisotropy. Then,
the total anisotropy energy becomes

K m̂=ẑ
tot (θ,μ) =Ki(θ,μ) + Kex( ẑ,n̂)

= − Keff (μ) sin2 θ − Jex sin θ. (24)

As a result, the additional exchange energy simply adds to
the intrinsic anisotropy energy and the Néel vector is strongly
pinned to the [001] direction. This results in an increase of μc

and the AFS system remains in the gapped phase for a larger
range of μ. When m̂ = (100), the total energy is

K m̂=x̂
tot (ϕex,θ,μ) = Ki(θ,μ) + Kex(x̂,n̂)

= −Keff (μ) sin2 θ − Jex cos θ cos ϕex, (25)
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where ϕex is the in-plane angle between m̂ and n̂. The global
minimum of the anisotropy energy in Eq. (25) occurs at

(ϕex,θ ) =
{

(0, cos−1[Jex/2Keff ]), if 2Keff > Jex

(0,0), if 2Keff � Jex,
(26)

whose derivation is in Appendix D. Equation (26) describes
the manner in which the Néel vector is oriented with respect to
the m̂ for different exchange coupling energies, Jex. When the
exchange coupling energy is comparable to or smaller than the
intrinsic anisotropy energy satisfying Jex < 2Keff , the overall
anisotropy energy is modified by the exchange coupling and
gradually shifts the easy axis toward the in-plane direction.
Consequently, the Néel vector is tilted toward m̂ having an
out-of-plane angle θ = cos−1 Jex

2Keff
for Jex < 2Keff . When the

exchange coupling energy is larger than 2Keff , n̂ is completely
aligned with m̂.

In our system, we assume a fixed exchange coupling
energy Jex < 2Keff (0) with m̂ = (100). Then the Néel vector
is initially tilted away from [001] and the energy spectrum is
gapped. As we raise the chemical potential, the magnitude of
Keff (μ) decreases and n̂ is tilted further toward m̂ reducing
the size of the gap. When the chemical potential reaches the
critical chemical potential μ′

c satisfying Keff (μ′
c) = Jex/2, n̂

is aligned with [100] having the gapless spectrum. Note that
such reorientation of m̂ occurs when Keff (μc) = 0 in the
absence of the exchange coupling and |μ′

c| < |μc| as Keff

is a monotonic decreasing function, as shown in Fig. 4(a).
Therefore, the topological MIT occurs at a smaller chemical
potential deviation from the Dirac point when compared to
the intrinsic AFS system. By contrast, when m̂ = (001), the
spectrum remains gapped at μc. Therefore, by comparing the
energy spectrum of the two distinct m̂ configurations, we may
observe a clear difference in the transport signature.

To examine the transport signature of the AFS-FI system,
we construct a real-space based tight-binding model. Fig-
ure 8(a) shows a schematic of the system. We use the real-space
based tight-binding model in Eq. (3) and the parameters used
in Fig. 2(a). We set T = 77 K in order to generate a smooth
current plot, yet clearly resolve the gap in the transport results.
We assume a thin slab geometry assuming that the proximity
exchange coupling at the bottom surface plays a significant
role throughout all layers. The simulation geometry consists
of ny = 20 sites in transport direction and nz = 5 sites for
thickness direction leaving x̂ direction in momentum space.
The conductance is calculated using nonequilibrium Green’s
function [41]. The metallic contact is connected to the left and
right hand side of the device region and we use the wide-band
limit (WBL) approximation [41] for the contact self-energy.
The interface exchange coupling is not explicitly included in
our Hamiltonian. Instead, we compute the free energy of our
real-space Hamiltonian from Eqs. (8) and (10) and compute
Keff (μ) = −Ki(0, π

2 ,μ) as a function of μ. For a given μ, we
assume that FI magnetization m̂ is aligned along the x̂ axis with
a given exchange coupling energy Jex. Then we determine the
orientation of n̂ from Eq. (26).

Figure 9(a) shows the out-of-plane angle θ for n̂ as a
function of μ for different values of Jex. The black solid
line shows θ for m̂||[001]. In this case, the exchange energy
anisotropy is aligned with the intrinsic anisotropy energy at
μ = 0 and n̂ stays pinned to the [001] direction. For the

FIG. 9. (a) The Néel vector orientation which minimizes the
anisotropy energy in Eq. (25). The black solid line represents the
AFS-FI system with m̂||ẑ. The red triangle symbol, and the magenta
circular symbol represents the system with Jex = 1.0Keff (0), and
Jex = 1.5Keff (0), respectively, and m̂||x̂. (b) The current is calculated
for the corresponding conditions in (a). The color and symbols
are matched to describe different Jex strength and the current is
plotted in log scale. The dashed line represents the current with n̂||x̂
configuration. The inset shows the current near μ = 0 in log scale.

m̂||[100] case, however, Fig. 9(a) shows an evolution of n̂ as
a function of μ. Unlike the intrinsic AFS system where n̂ is
aligned with ẑ at μ = 0, n̂ is tilted away from [001] initially
due to the nonzero Jex. We observe that the Néel vector is
further away from [001] for larger exchange energy Jex. As
we increase the deviation of the chemical potential from the
Dirac point, the magnitude of Keff (μ) decreases and the Néel
vector reorients toward in-plane direction gradually. When the
reduced intrinsic anisotropy energy reaches Keff (μ′

c) = Jex/2,
the Néel vector is completely aligned to the [100] direction and
the topological MIT occurs. Such Néel vector switching occurs
at smaller μ′

c for larger Jex, consequently, Fig. 9(a) shows that
a larger interface exchange coupling energy results in a smaller
critical chemical potential.

With our understanding of the interplay between intrin-
sic anisotropy and interface exchange coupling energy, we
now examine the potential quantum transport signature. The
transmission of the two terminal device is computed using
n̂ obtained in Fig. 9(a) for a given μ and m̂. Figure 9(b)
illustrates the response of the AFS-FI structure under a small
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bias of VLR = 10 mV. The dashed line represents the current
with n̂||[100] configuration which has a gapless dispersion
and thereby shows a finite current even at μ = 0. The black
solid line represents the current response of the AFS-FI system
when m̂||[001]. Here, n̂ is pinned to the [001] direction and
the spectrum is gapped. The corresponding current confirms
that the AFS is insulating near μ = 0 eV. In this case, no
topological MIT occurs as n̂ is fixed to [001] and the current is
attributed to the carrier conduction through the conduction or
valence band. For the m̂||[100] case, we observe the increased
current value at μ = 0 [see inset of Fig. 9(b)]. This is due to
the fact that the gap size becomes smaller as the Néel vector
is tilted toward [100] as is shown in Fig. 9(a). For increasing
μ, the topological MIT occurs at μ′

c and manifests itself as
a clear increase in current compared with the m̂||[001] case.
Such distinction is more clear for larger Jex, as the critical
chemical potential μ′

c is located closer to the Dirac point where
the current difference between gapped and gapless phase is
maximized.

VI. SUMMARY AND CONCLUSION

We propose the voltage driven antiferromagnetic (AF)
order manipulation in antiferromagnetic semimetals (AFS).
We predict that the spectrum may open a gap as we reorient AF
order and break the underlying nonsymmorphic symmetry. By
calculating the free energy of gapped and gapless spectrum,
we find that the system prefers the gapped spectrum when the
chemical potential is located at the Dirac point. However, the
free energy difference between gapped and gapless spectrum
is monotonically reduced as the chemical potential deviates
from the Dirac point. We find the system eventually changes
its preferred phase from gapped to gapless spectrum at the
critical chemical potential. Consequently, the corresponding
AF order is switched from the out-of-plane to the in-plane
direction. Lastly, we propose a two-terminal experimental
setup to identify the voltage driven Néel vector switching.
The ferromagnetic insulator (FI) may be coupled to the AFS
system and introduces an additional anisotropy energy via
exchange coupling in a desirable direction. For a sufficiently
large exchange energy, the Néel vector is pinned to the out-
of-plane direction when the FI net magnetization is aligned
along the ẑ axis. In this case, the two terminal current shows
a conduction gap that corresponds to the intrinsic gap of the
gapped AFS spectrum. When the net magnetization of FI is
aligned with the Néel vector of the gapless spectrum, the
induced exchange energy alters the critical chemical potential.
Then the Néel vector switching occurs at the reduced critical
chemical potential. As a result, the two terminal current
shows a reduced gaplike feature which serves as evidence for
the intrinsic anisotropy energy dependence on the chemical
potential of the AFS.

The proposed AF order switching mechanism provides a
simple method for electrical control over AF order, which
may open an avenue for realizing AF based spintronic device.
However, one needs to consider dynamic interactions between
electronic structure of the AFS and Néel vector orientation as
the current flow may induce additional spin-orbit torque, but
we leave this for future work.
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APPENDIX A: LOW-ENERGY EFFECTIVE
HAMILTONIAN NEAR THE DIRAC POINT

In this section, we obtain the low-energy effective model
near the Dirac point. We begin with the Dirac point assuming
that n̂ is aligned with the x̂ direction. Following Eq. (5) and dis-
cussions therein, the Dirac point is located at k1 = (π,ky0,kz0),
where ky0 and kz0 satisfies � − (λ − λz cos kz0) sin ky0 = 0.
We expand the Hamiltonian in Eq. (4) near the momentum
k1 as

H (k1 + q) 
 (vx1τ1 + vx2τ2 + vx3τ3σ2)qx

+ (vyqy + vzqz)τ3σ1 + �τ3σ · n̂1, (A1)

where q = (qx,qy,qz) is an infinitesimal deviation from k1

and n̂1 = (cos θ cos ϕ, cos θ sin ϕ, sin θ ) is the Néel vector
deviated from the x̂ direction with the in-plane angle ϕ and
out-of-plane angle θ . In Eq. (A1),

vx1 = −(1/2)(txy + tz cos kz0) cos(ky0/2),

vx2 = −(1/2)tz sin kz0 cos(ky0/2),

vx3 = −(λ − λz cos kz0),

vy = −(λ − λz cos kz0) cos ky0,

vz = −λz sin kz0 sin ky0. (A2)

Then, the energy spectrum of Eq. (A1) is

Eq =
[(

vxqx − vx3

vx

�y

)2

+ (vyqy + vzqz − �x)2�2
z

+�2
y

v2
x1 + v2

x2

v2
x

]1/2

, (A3)

where vx =
√
v2

x1 + v2
x2 + v2

x3 and �n̂ = (�x,�y,�z). As a
result, the deviation of the Néel vector from n̂||[100] config-
uration develops the energy gap which satisfies the following
relation:

Eg ∝ �

√
sin2 θ + cos2 θ sin2 ϕ

v2
x1 + v2

x2

v2
x

. (A4)

APPENDIX B: FREE ENERGY FOR FERMIONS

In this section, we derive the thermodynamic potential or
the Helmholtz free energy used in this study. The Helmholtz
free energy is defined as [34]

F = − 1

β
ln Z, (B1)

where β = 1/kBT , T is temperature, and Z is the partition
function. The partition function is defined as

z = e−βH . (B2)
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Assuming that the Hamiltonian is diagonalized, we may write

z = e−βH = Tr{e−β
∑

k Hk}
=

∑
{n}

e−βnk,i

∑
k,i (Ek,i−μ) =

∑
{n}

∏
k,i

e−nk,iβ(Ek,i−μ),
(B3)

where nk,i = 0, 1 is fermion occupation number at the specific
state, μ is the chemical potential, and the last summation

∑
{n}

runs over all eigenvalues Ek,i , at momentum k, which belongs
to the ith band with the total particle number N , or

∑
{n} nk,i =

N . If we consider every possible configuration, we have the
grand partition function

Z =
∞∑

N=0

∑
{n}

∏
k,i

e−nk,iβ(Ek,i−μ)

=
∏
k,i

[ ∑
{n}

e−nk,iβ(Ek,i−μ)

]
=

∏
k,i

(1 + e−β(Ek,i−μ)). (B4)

As a result,

F = − 1

β

∑
k,i

ln(1 + e−β(Ek,i−μ)). (B5)

In the continuum limit, we use the fact that
∑

k =
(V/(2π )3)

∫
d3k. Then,

F

V
= − 1

β(2π )3

∫
d3k

∑
i

ln(1 + e−β(Ek,i−μ)). (B6)

APPENDIX C: ZERO-TEMPERATURE LIMIT SOLUTION
FOR FREE ENERGY

The free energy function derived in Eq. (B6) may be
rewritten as

F

V
= 1

(2π )3

∫
d3k

∑
i

fk,i , (C1)

where we define

fk,i = − 1

β
ln(1 + e−β(Ek,i−μ)). (C2)

Equation (C2) represents the individual eigenstate contribution
to the total free energy. In order to understand how eigenvalues
change the free energy, we may linearize Eq. (C2) by assuming
a zero-temperature limit, or T → 0. Specifically, we consider
the three different energy ranges shown in Fig. 5(a): (i) When
the eigenvalues are above the chemical potential, or x =
β(μ − Ek,i)  −1,

fk,i 
 −(1/β) ln(1) = 0. (C3)

(ii) When the eigenvalues are near the chemical potential, or
|x|  1,

fk,i 
 −(1/β) ln (2 + x) 
 −(1/β) ln 2

(
1 + 1

2 ln 2
x

)


 −μ − Ek,i

2
, (C4)

where we assume β → ∞ and (1/β) ln 2 → 0. (iii) When
the eigenvalues are well below the chemical potential,

or x � 1,

fk,i 
 −(1/β) ln(ex) = −(μ − Ek,i). (C5)

We summarize the results in Eq. (12).

APPENDIX D: FINDING A GLOBAL MINIMUM FOR
ANISOTROPY ENERGY

In Sec. V, we discuss about the total anisotropy energy of
the AFS-FI coupled system. The total anisotropy energy in
Eq. (25) reads

K m̂=x̂
tot (ϕex,θ,μ) = −Keff (μ) sin2 θ − Jex cos θ cos ϕex.

(D1)

For a given chemical potential μ, we find (ϕex,θ ) that mini-
mizes Eq. (D1). As a first step, we find the local minima for
given ϕex by varying θ . Taking first derivative with respect to
θ , Eq. (D1) becomes

∂θK
m̂=x̂
tot (ϕex,θ,μ) = −2Keff sin θ cos θ + Jex sin θ cos ϕex

= sin θ (Jex cos ϕex − 2Keff cos θ ). (D2)

We find the local minima when (ϕex,θ ) satisfies
sin θ = 0 or Jex cos ϕex − 2Keff cos θ . When 2Keff > Jex,
we have the following local minima at θ = 0 or
θ = θ1 = cos−1(Jex cos ϕex/2Keff ), each of which produces
minima in anisotropy energy as

K m̂=x̂
tot =

{−Jex, if θ = 0
−Keff

[
1 + (

Jex
2Keff

)2]
, if θ = θ1.

(D3)

Among two values, global minima is found when (ϕex,θ ) =
(0, cos−1[Jex/2Keff ]).

When 2Keff < Jex, we may find the in-plane angle ϕex =
ϕ2 which satisfies 2Keff = Jex cos ϕ2. Then, we still can find
local minima which satisfies Jex cos ϕex − 2Keff cos θ = 0 in
Eq. (D2). Then we find minimum anisotropy energy as

K m̂=x̂
tot =

{−Jex, if θ = 0
−2Keff , if θ = θ2,

(D4)

where θ2 = cos−1(Jex cos ϕ2/2Keff ) and 2Keff = Jex cos ϕ2.
Due to the condition given as 2Keff < Jex, we have the global
minima K m̂=x̂

tot = −Jex at (ϕex,θ ) = (0,0). In summary, the
Néel vector orientation that gives us the global minima in
anisotropy energy is at

(ϕex,θ ) =
{

(0, cos−1[Jex/2Keff ]), if 2Keff > Jex

(0,0), if 2Keff � Jex,
(D5)

which is shown in Eq. (26).
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