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Band discontinuities at Si-TCO interfaces from quasiparticle calculations: Comparison
of two alignment approaches
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Modern quasiparticle theory based on hybrid functionals and the GW approximation yields electronic band
structures with a high accuracy for silicon but also for oxides applied as transparent electrodes or layers in
solar cells. The quasiparticle electronic structures are used to derive natural band discontinuities applying two
different methods, a modified Tersoff method for the branch-point energy and the Shockley-Anderson model
via the electron affinity rule. For the known Si-SiO2 interface, which leads to type-I junctions, we demonstrate
that both approaches are in good agreement with measured values. For the Si-oxide heterojunctions we observe
a tendency for misaligned type-II heterostructures for In2O3, ZnO, and SnO2, which indicates highly efficient
separation of electron-hole pairs generated in the Si layer. We show how surface orientation and structure as well
as many-body effects influence the ionization energy and electron affinity and, hence, the band discontinuities
obtained within the Shockley-Anderson model.
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I. INTRODUCTION

Transparent conducting oxides (TCOs) such as In2O3,
SnO2, and ZnO are important materials with applications
as transparent electrodes in optoelectronic or photovoltaic
devices and sensors.1 They are known to be transparent not
only in the visible spectral region of about 400 to 700 nm but
almost in the entire range of the solar spectrum and usually
exhibit a high electron conductivity.2–4 Recently, even the
possibility of transparent electronics based on doped oxides
has been suggested.5,6 Such oxides are also used in silicon (Si)
photonics and Si-based solar cells, sometimes together with
extremely thin insulating SiO2 layers.7 Therefore, knowledge
about the interfaces of TCOs with crystalline Si layers is
extremely important but poor in praxis. This holds especially
for the energy-band alignment of heterostructures of such
oxides with silicon.8,9 The band discontinuities are virtually
unknown. Direct measurements of the band discontinuities
have not yet been published. Only band offsets of the ZnO-Si
interface have been estimated using measured electron affinity
and work function of Si and ZnO. They indicate a type-II
heterosystem.10–12

Natural band discontinuities can be derived if electronic
properties of the two materials, semiconductors and/or insu-
lators, on both sides of the interface are known. The highly
important energy-band diagram near the interface can be
constructed if the electron affinities A and the ionization
energies I are known as energy distances to the vacuum level.
In the spirit of the Shockley model for metal-semiconductor
contacts13,14 Anderson15 made the first attempt to explain
band offsets by alignment of the vacuum levels of the two
nonmetals in contact. This method does not take into account
electronic effects of the actual interface and, therefore, rests on
the assumption that interface states do not play an important
role. While A and I for silicon are well known and more
or less accepted,14,16 the situation is completely different for
the TCOs. Available experimental values for I vary with the
preparation technique of the oxide layers, the postdeposition

treatment, and the doping (see, e.g., Ref. 17). Since even the
fundamental gaps

Eg = I − A (1)

are under discussion for In2O3 and SnO2 (see Refs. 18–20 and
references therein), the resulting electron affinities A are ques-
tionable. As a consequence, electronic-structure parameters of
the TCOs, such as I and A, are controversially discussed in
the literature.21–26

A completely different alignment concept is based on
the charge neutrality level or branch-point (BP) energy
EBP. The use of such a universal reference level has been
suggested by Frensley and Kroemer.27 This concept is based
on the influence of interface states (or surface states for the
semiconductor-vacuum interface) in the fundamental gap. It
goes back to the idea of virtual gap states (ViGSs) derived
from the complex bulk band structure.16,28–31 The branch-point
concept of Tersoff,32 which is very similar to an earlier
approach of Tejedor and Flores,33 is easily accessible from
a physical point of view. The branch-point energies of the
nonmetals in contact determine the band lineup. Nevertheless,
the theoretical determination of the branch-point energy asks
for some approximations.30,32,34 However, the experimental
results concerning the branch-point position with respect to
the band edges are also under debate. Different conclusions
have been published with respect to the occurrence of surface
electron accumulation35,36 or surface electron depletion.21,37

Nevertheless, in contrast to the majority of semiconductors
and insulators there are strong theoretical and experimental
arguments34–36,38 that the branch points of In2O3, SnO2,
and ZnO lie in the lowest conduction band and not in the
fundamental gap.

A more direct determination of the band lineup is possible
by means of an explicit self-consistent interface calculation.
This has been done in the past for lattice-constant and crystal-
structure matched semiconductors (see, e.g., Refs. 39 and 40).
However, for the Si-TCO systems such calculations are at
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or beyond the limits of current computational possibilities.
The adjacent crystals possess different crystal structures,
lattice constants, and completely different chemical bonding.
A construction of a reasonable atomic geometry of even a
strained interface is extremely difficult.

The difficulties to investigate Si-oxide heterojunctions
experimentally arise mainly from sample quality and sample
preparation problems. Theoretical methods like ab initio
calculations do not face those difficulties and can help to
advance the understanding of these important interfaces.
The application of modern quasiparticle (QP) band-structure
theory41,42 allows us to compute characteristic energies and
band discontinuities34 with high precision. Indeed, the QP
band-structure theory has now reached an accuracy, which
allows us to treat oxides, whose electronic properties are
notoriously difficult to predict.18,20,42,43

In the present paper, the QP band structures are used to
compute ionization energies, electron affinities, and branch-
point energies for In2O3, SnO2, and ZnO. Applying two
different alignment procedures the conduction- and valence-
band discontinuities �Ec and �Ev are computed with respect
to crystalline silicon using the branch-point energies or the
vacuum levels. The underlying theoretical and computational
methods are presented in Sec. II. In Sec. III the two alignment
methods to derive band discontinuities are discussed and
compared for the well-studied model Si-SiO2 interface. Next
we present ionization energies, electron affinities, and branch-
point energies for the TCOs and discuss their reliability in the
light of available measured values (Sec. IV). These results are
used to predict band discontinuities and, hence, band lineups
for the junctions with crystalline silicon. Finally, in Sec. V we
conclude with a brief summary.

II. COMPUTATIONAL METHODS

A. Atomic geometry

The ground-state properties of the oxides are computed
in the framework of the density functional theory (DFT)44

using the local density approximation (LDA)45 for exchange
and correlation (XC). Explicitly, we use the XC functional
of Ceperley and Alder.46 The ZnO ground-state properties
have been computed in the generalized gradient approximation
(GGA), using the PW91 functional to model XC.47 All
computations are performed using the Vienna Ab initio
Simulation Package (VASP).48 The electronic wave functions
are expanded using plane waves up to kinetic energies of 450
(Si), 500 (SiO2), 550 (In2O3), 450 (SnO2), and 500 eV (ZnO),
respectively.18,20,41–43 The projector-augmented wave (PAW)
method49 is used to describe the electron-ion interaction in
the core region. Usually it allows for the accurate treatment
of first-row elements such as oxygen and localized semicore
states such as In4d, Zn3d, and Sn4d by modest plane-wave
cutoffs.

Silicon crystallizes in the cubic diamond (cd) structure. In
the case of In2O3 we study the two most stable polymorphs, the
rhombohedral (rh) and the body centered cubic (bcc) bixbyite
geometries, while for SnO2 only the most favored rutile
(rt) geometry is investigated. For the purpose of comparison
also the native oxide of silicon, SiO2, is studied within

TABLE I. Lattice constants (in Å) obtained within DFT-LDA
(GGA for ZnO) for the oxides and silicon. For the cubic materials only
the cubic lattice constant a0 is given while for the noncubic oxides, a,
c, and c/a are listed. Values in parentheses are from experiment.52–55

Lattice constant

Material a0,a c c/a

cd-Si 5.402a

(5.431)b

cb-SiO2 7.391b

(7.131)d

bcc-In2O3 10.094e

(10.117)f

rh-In2O3 5.479e 14.415e 2.631e

(5.487)f (14.510)f (2.644)f

rt-SnO2 4.737g 3.200g 0.676g

(4.737)h (3.186)h (0.673)h

wz-ZnO 3.28i 5.28i 1.61i

(3.249)b (5.204)b (1.602)b

aReference 41.
bReference 52.
cReference 56.
dReference 53.
eReference 18.
fReference 54.
gReference 20.
hReference 55.
iReference 57.

the cubic β-cristobalite (cb) structure with an fcc Bravais
lattice, whose electronic properties are similar to amorphous
SiO2.

50 The Brillouin-zone (BZ) integrations are performed
by summations over special points of the Monkhorst-Pack
(MP) type.51 Monkhorst-Pack meshes of 5×5×5 (cubic) or
8×8×8 (rhombohedral) k points are found to be sufficient for
In2O3.

18 For hexagonal ZnO a 12×12×7 mesh is applied.42

In the rt-SnO2 case, we use a mesh of 8×8×14 k points.20

Finally, meshes of 8×8×8 and 16×16×16 k points have been
applied for cb-SiO2 and cd-Si, respectively.

The minimization of the DFT-LDA total energy leads to
the cubic (a0) and noncubic (a, c) lattice constants in Table I,
previously presented in Refs. 18,20,41,56, and 57. They are
in good agreement with experimental data. The significant
deviation from the measured value of the SiO2 lattice constant
is due to the fact that the measurements were carried out on the
I 4̄2d geometry while we use the ideal structure with the Fd3m

space group. Our lattice constant is in good agreement with
other theoretical predictions for this geometry.53 Apart from c

of rt-SnO2 the lattice constants differ from the corresponding
experimental values by less than 1%. The obtained atomic
geometries are used for the electronic structure calculations
and as stacking geometries for the surface simulations.

The surface calculations are carried out using the repeated
slab supercell method. The slabs consist of 9, 11, 8, 19, and
20 layers for bcc-In2O3(001), rh-In2O3(001), rt-SnO2(001),
rt-SnO2(100), and wz-ZnO(001), respectively, with 12 Å of
vacuum each. Usually orthorhombic slabs are applied resulting
typically in N×N×1 MP meshes, with N = 3, 8, 8, and 12 for
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bcc-In2O3, rh-In2O3, SnO2(001), and ZnO, respectively. For
the SnO2(100) slab we used an MP mesh of 8 × 14 × 1.

B. Quasiparticle band structures

The resulting structural parameters are used for the cal-
culation of excited-state properties, more precisely the QP
band structures.41,58 The QP equation with a self-energy in
Hedin’s GW approximation is solved pertubatively on top of
the self-consistent solution of a generalized Kohn-Sham (gKS)
equation. In the zeroth approximation the GW self-energy is
expressed by the spatially nonlocal XC potential VXC(x,x′)
using the hybrid functional HSE of Heyd, Scuseria, and
Ernzerhof59–62 [employing a screening parameter of ω =
0.15 a.u.−1 instead of ω = 0.11 a.u.−1 (see disambiguation in
Ref. 63)]. In a first iteration the QP wave functions remain
unchanged and are replaced by the solutions of the gKS
equation with the potential VXC(x,x′). The QP shifts for the
gKS eigenvalues are computed within the G0W0 approach.64

It has been demonstrated that for the compounds investigated
in this work this treatment leads to energy gaps in excellent
agreement with measured values.18,20,41,42,65

C. Electrostatic potentials

Most important for the absolute positions of the electronic
energy levels in solids is the electrostatic potential V (x) acting
on the electrons. It can be derived from the effective single-
particle potential occurring in the Kohn-Sham equation45 or the
generalized Kohn-Sham equation.41 It is defined as the local
part of the electron-ion interaction represented by the pseu-
dopotentials and the Hartree potential of the electrons. This
holds independently of the local (LDA), semilocal (GGA),
or nonlocal (HSE) description of the exchange-correlation
part of the effective single-particle potential. The electrostatic
potential obtained within the HSE approach is also used for
describing the QP case, since the wave functions and, hence,
the electron density are not changed during the first-order
perturbation step. The only variation of the electrostatic
potentials between LDA/GGA and HSE is due to the change
of the electron density resulting from the use of different XC
functionals. However, this effect is only locally important if
localized states (such as semicore d states) contribute to the
density of the valence electrons.

As an example, the electrostatic potentials obtained for bulk
bcc-In2O3 in LDA and HSE are plotted in Fig. 1 along a
cubic axis. For practical reasons only an average potential
Ṽ (z) over a plane perpendicular to the studied normal direction
of a surface or interface, assumed to be the z axis, is given.
The details of the electron density modified by the local or
nonlocal XC potential influence the electrostatic potentials
only close to the atomic cores due to the strong localization
of the In4d and O2s states. However, these modifications are
only of local importance and can be neglected if the potential
is averaged also over the z direction within the slab. Therefore,
the DFT-LDA potentials are used below for the band alignment
between bulk and surface of the semiconductors. The strongest
influence of the XC potential is visible for the positions of
the conduction-band minimum (CBM) Ec and valence-band
maximum (VBM) Ev relative to the potentials. After inclusion

0 2 4 6 8 10
z (Å)

-6

-4

-2

0

2

4

6

8

E
ne

rg
y 

(e
V

)

E
c

E
v

0 2 4 6 8 10
z (Å)

-6

-4

-2

0

2

4

6

8

E
ne

rg
y 

(e
V

)

E
v

E
c

FIG. 1. (Color online) Electrostatic potential Ṽ (z) averaged over
planes perpendicular to the cubic axis z||[001] for bixbyite In2O3.
The results obtained within (a) LDA and (b) HSE descriptions of the
electron density are plotted. In addition, the corresponding positions
of the valence-band maximum Ev and conduction-band minimum Ec

are given as dashed horizontal lines. In (b) the band edges including
QP effects are shown as red solid lines.

of the QP corrections we obtain the position of the QP band
edges relative to the electrostatic potential. In Fig. 1 the LDA
Kohn-Sham values Ec and Ev [Fig. 1(a)] as well as the HSE
and the QP energies Ec and Ev [Fig. 1(b)] are given. The
comparison of the two panels shows that the XC functional and
QP effects drastically influence the position of the band edges
with respect to the electrostatic potential. The application of a
nonlocal potential shifts both band edges downward by several
eV and opens up the gap. The GW QP corrections lead to a
very small downward shift of Ev and a considerable upward
shift of Ec, which widens the gap even further.

III. BAND ALIGNMENT AT THE HETEROINTERFACE

A. General considerations

The fundamental parameters determining many physical
properties of heterostructures of nonmetals are the relative
positions Ev and Ec of the QP valence and conduction-band
extrema at the interface of the two materials 1 and 2. The band
discontinuities or band (edge) offsets are defined as

�Ec = Ec2 − Ec1, �Ev = Ev1 − Ev2 (2)

with �Ec + �Ev = Eg2 − Eg1 = �Eg , the band-gap differ-
ence of the semiconductors in contact. The definition of the
signs of the band discontinuities �Ev and �Ec is chosen in
such a way that the oxide with the wider gap forms a straddling
type-I heterostructure14 with silicon if �Ev > 0 and �Ec > 0.

In the introduction two approaches for calculating
natural-band discontinuities using two different alignment
procedures15,27 have been outlined. In many cases these
approaches may give results that reasonably describe the
transition of the electronic properties at the interface.14,16,31

However, the actual preparation of the interface also influences
such a heterotransition. Therefore, especially for heterovalent,
heterocrystalline, and nonlattice matched crystals, theoretical
and experimental data for the band offsets are at variance.

For pseudomorphic interfaces with a more or less defined
atomic geometry and stoichiometry, there exists a well-defined
procedure to compute the band discontinuities �Ev and
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�Ec at the interface applying ab initio electronic-structure
calculations.66,67 One artificially introduces a periodicity into
the problem by constructing a supercell consisting of two slabs
of the respective semiconductors in a particular orientation.
If possible (e.g., for nonpolar interfaces) the two interfaces
should be equivalent in geometry and stoichiometry to avoid
artificial dipole potentials and unphysical charge transfer.
The electronic structure of the system is then calculated
self-consistently. The planar average of the electrostatic (or
even the total) potential can then be plotted as shown for a
bulk system in Fig. 1. Typically, the atomic oscillations within
the material slabs are bulklike. Aligning these oscillations
with the oscillations of the potential derived from the bulk
calculations and taking into account the positions of Ev and
Ec relative to these oscillations, one can derive the differences
�Ev and �Ec of the absolute positions of the bulk bands
on the two sides of the interface. Such a procedure can be
further refined by self-consistent treatments. One of the most
important quantities is the overall interface dipole that can be
made self-consistent by itself and already provides good results
even if the potential shape is not fully made self-consistent.40

Unfortunately, the interfaces of the transparent conducting
oxides under consideration with other semiconductors (e.g.,
Si) are usually much more complex and more difficult to treat
theoretically than well-defined atomic interface geometries.
Usually the atomic basis in a primitive unit cell of the
bulk crystal contains more than two atoms. For instance,
bixbyite In2O3 possesses an atomic basis with 40 atoms. The
chemical bonds are rather ionic. The oxygen atoms tend to
be twofold negatively charged ions.18 Consequently, besides
the fourfold coordination in ZnO also higher coordinations of
the metal atoms appear. Less directional but strong electrostatic
forces play a role for the interface formation. Moreover,
the atomic structures of the oxides and Si do not lead
to pseudomorphic interfaces. Already the description of a
(001) interface between β-cristobalite SiO2 and diamond Si
requires model assumptions about stoichiometry, dangling
bond passivation, interface dipoles, and strain in the oxide.68

Despite the fact that the heterointerfaces silicon-TCO with
In2O3, SnO2, or ZnO on the oxide side play an important role
for the action of numerous devices (e.g., for the separation of
optically excited electrons and holes in the silicon absorber of
a Si-based solar cell) practically nothing is known about these
interfaces from a microscopic point of view. For that reason
we have to resort to the natural-band discontinuities �Ec and
�Ev .

B. Band alignment via branch points

The QP band structures allow the computation of the
branch-point energies EBP using a recently developed approx-
imative method.34 It is based on a modification of the Tersoff
method,32 which relies solely on bulk properties.30,33,69,70 In
practice, the branch-point energy is computed as a BZ average
of the QP eigenvalues of the lowest NCB conduction bands and
the highest NVB = 2NCB valence bands

EBP = 1

2Nk

∑
k

⎡
⎣ 1

NCB

NCB∑
i

εci
(k) + 1

NVB

NVB∑
j

εvj
(k)

⎤
⎦ (3)

The number of bands is scaled with the number of valence
electrons (without d electrons). For crystals with two atoms
in the primitive unit cell (e.g., cd-Si) it holds that NCB = 1.
Correspondingly, one obtains NCB = 2 (wz-ZnO, 4 atoms),
2 (cb-SiO2, 3 atoms), 4 (rt-SnO2, 6 atoms), 6 (rh-In2O3, 10
atoms), and 12 (bcc-In2O3, 40 atoms).

Neglecting the real structure of an interface including
interface dipole, stoichiometry, and interdiffusion, the branch-
point energies EBP can be used to derive the natural-band
discontinuities. With the VBM Ev = 0 as energy zero, the
CBM Ec takes the value of Eg . Using EBP and Eg as listed in
Table II the band offsets are calculated as

�Ec = [Eg(oxide) − EBP(oxide)] − [Eg(Si) − EBP(Si)],

�Ev = EBP(oxide) − EBP(Si). (4)

The branch-point energy is used as universal reference level to
align the energy bands of Si and the TCO according to Frensley
and Kroemer.27 The physical model behind this assumes the
existence of interface-induced virtual gap states, which are
donorlike above and acceptorlike below EBP. That is why the
branch-point energy pins the Fermi level at the interface and
can be used as a universal reference energy. The positions of
the band extrema Ev and Ec relative to the reference level
can be interpreted as natural-band discontinuities.71,72 The
approximation in the branch-point alignment method consists
in the neglect of the influence of native surface dipoles and
interface orientation. The resulting band discontinuities are
listed in Table III.

C. Band alignment via vacuum levels

Since for Si-TCO interfaces reliable models, which allow a
direct computation of band offsets do not exist, we suggest to
do an intermediate step by studying the materials surfaces or
vacuum-oxide interfaces. For an idealized surface this allows
the description of the surface barriers and, consequently, the
determination of the absolute positions of the band edges
Ev and Ec with respect to the vacuum level Evac in the QP
approach. The energy differences

I = Evac − Ev, A = Evac − Ec (5)

define the ionization energy I and the electron affinity A for
such a surface. Within this idealized frame the two quantities
are directly related to the fundamental QP gap by73

Eg = I − A = Ec − Ev. (6)

Results are graphically presented in Fig. 2 for the case of the
Si-SiO2 interface. They clearly show that in a certain distance
from the surface the electrostatic potentials exhibit a bulklike
behavior. Within the surface region there is a steep increase to
a plateau which represents the vacuum level Evac.

The calculated ionization energies I and electron affinities
A (cf. Table II) can also be used to derive natural-band
discontinuities in the framework of the electron affinity rule15

or, more general, the Shockley-Anderson model14,74

�Ec = A(Si) − A(oxide), �Ev = I (oxide) − I (Si). (7)

In principle, this model employs the vacuum level Evac

according to definition (5) as universal reference level for the

035305-4



BAND DISCONTINUITIES AT Si-TCO INTERFACES . . . PHYSICAL REVIEW B 85, 035305 (2012)

TABLE II. Characteristic energies: fundamental gap Eg , branch-point energy EBP, electron affinity A, and ionization energy I of transparent
conducting oxides derived from QP calculations. For comparison, the data for Si and SiO2 are listed too. All values in eV. The surface orientation
used for the calculation of I and A is indicated by the Miller indices (hkl) or (hkil). Experimental values are given in parentheses.

Crystal Orientation Eg EBP A I

cd-Si (001) 1.29 0.29 4.54 5.83
(1.17)a (0.36)b (4.0–4.2)d (5.15–5.33)d

cb-SiO2 (001) 8.76 4.52 1.44 10.20
(8.9)c (4.9)b

rh-In2O3 (0001) 3.31 3.79 6.11 9.41
(3.02)e (3.50)e

bcc-In2O3 (001) 3.15 3.50 5.95 9.10
(2.93)e (3.58)e (3.5–5.0)f (7.1–8.6)f

rt-SnO2 (100) 3.64 3.82 4.10 7.73
(3.6)g (4.44)h (8.04)h

(001) 3.45 7.08
(4.44)h (8.04)h

wz-ZnO (0001) 3.21 3.40 5.07 8.24
(3.38)a (3.6,3.04,3.78)i,j (4.05, 3.7–4.6, (7.45, 7.1–8.0,

4.42,4.64)d,h,k,l 7.82,8.04)d,h,k,l

aReference 52.
bReference 31.
cReference 77.
dReference 16.
eReferences 19 and 86.
fReferences 21 and 26.
gReference 80.
hReferences 23 and 88.
iReference 22.
jReference 36.
kReference 87.
lReference 89.

band alignment. The band discontinuities (7) derived from the
I and A values in Table II are listed in Table III.

The vacuum level alignment relies on several approx-
imations that might limit its predictive power for band
discontinuities. First, the model assumes the dipole at the
interface to be the sum of the two surface dipoles (i.e.,
it neglects any charge transfer or charge rearrangements at

the interface). Furthermore, in computing I and A using
the described method we encounter a theoretical problem
in the QP description within Hedin’s GW approximation for
the full XC self-energy � = GW�, namely the neglect of
vertex corrections by replacing the vertex function by � ≡ 1.
It has been shown that the inclusion of vertex corrections in
the QP calculations by applying rough approximations for the

TABLE III. Natural-band discontinuities �Ec and �Ev [Eqs. (4) and (7)] of the studied oxides with respect to the band positions in
crystalline silicon derived by two different alignment procedures (see text) in comparison to experimental data. All values in eV.

Alignment Alignment via
Si heterojunction via EBP electron affinity rule Experiment

with �Ec �Ev �Ec �Ev �Ec �Ev

cb-SiO2 3.24 4.23 3.10 4.37 3.4a,3.13b 4.4a,4.3 − 4.61b

rh-In2O3 −1.48 3.50 −1.57 3.58 − −
bcc-In2O3 −1.35 3.23 −1.42 3.27 −0.61c, − 0.85d 2.6c,2.85d

rt-SnO2(100) −1.19 3.53 0.44 1.83 −0.25d 2.75d

rt-SnO2(001) 1.09 1.25
wz-ZnO −1.17 3.09 −0.53 2.34 −0.4e 2.55e

aReference 78.
bReference 16.
cReference 92.
dsee text.
eReference 12.
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FIG. 2. Planar-averaged electrostatic potential near a surface
for cd-Si(001) and cb-SiO2(001) computed within the LDA. The
respective QP levels Ec and Ev are indicated by horizontal lines.
Their difference yields the fundamental QP gaps Eg . The ionization
energies I and electron affinities A are indicated. The vacuum level
is used as zero of energy.

vertex function changes the position of the Si VBM only by
0.1 eV while the gap remains almost uninfluenced.75,76 For
SiO2 the vertex corrections seem to have a somewhat stronger
influence. They reduce I (A) by about 0.6 (0.3) eV,76 thereby
closing the QP gap by the difference. So a variation of the band
discontinuities of about 5–10 % due to further many-body
effects cannot be excluded.

D. Test: Si-SiO2 heterojunction

The gaps Eg as well as the branch-point energies EBP of
bulk silicon and SiO2 in the β-cristobalite structure are listed
in Table II. The QP gaps obtained within the HSE+G0W0

approach are in reasonable agreement with experimental
values.52,77 The deviations are of the order of 0.1 eV which may
be considered as the inaccuracy of the applied QP approach.
The branch-point energy EBP = 0.29 eV resulting for Si from
the QP band structure is almost in agreement with a measured
value of 0.36 eV.31 The deviation is smaller than 0.1 eV. In
this case the branch point is situated closer to the VBM than
to the CBM, as predicted by Tersof.f32 For SiO2 we find EBP

close to the midgap position, consistent with measurements.31

The alignment of the branch points of Si and SiO2 leads to
a band lineup with natural-band discontinuities �Ec = 3.24
eV and �Ev = 4.23 eV (see Table III) in excellent agreement
with measured data (see compilation in Refs. 16 and 78).
The alignment via the vacuum level leads to similar values
�Ec = 3.10 eV and �Ev = 4.37 eV (Table III). Deviations
between the two alignment methods are of the order of or less
than the deviations within the measured data.

This clearly positive conclusion with respect to the results
of the two completely different methods and their agreement
with experimental data for the band offsets suggest their
applicability to the Si-TCO heterojunctions. Nevertheless,
we have to mention again that real-structure effects like
stoichiometry, dangling bond passivation, interface dipoles,
and strain have been omitted. Furthermore, the interface
orientation may play a role. Already for a silicon surface,
the orientation and the accompanying morphology (atomic

arrangement due to relaxation and reconstruction) leads to a
variation of about 0.55 eV for Si(001) or 0.22 eV for Si(111)
for the ionization potential79 and, hence, influence the band
offsets derived via the electron affinity rule.

IV. RESULTS AND DISCUSSION

A. Electronic structure and branch-point energy of TCOs

The computed gap energies Eg in Table II agree well
with values measured for the TCOs19,52,80 with an accuracy
of 0.2 eV or better. However, one has to keep in mind that
the experimental gap energies are still under discussion. This
holds especially for In2O3 for which the values in Ref. 19 are
much below the values generally given in the literature (see,
e.g., Ref. 2).

For illustration the QP band structures of rh-In2O3, rt-
SnO2, and wz-ZnO18,20,42 are plotted in Fig. 3. The branch-
point energies EBP are shown as well. For all three TCOs
they lie within the lowest conduction band near the CBM. The
reason is the strong k dispersion of the lowest conduction band,
which gives rise to an extremely low density of states near the
pronounced CBM and relatively large electron affinities (see
vacuum level in Fig. 3) in all TCOs. Consequently, surface
electron accumulation is found experimentally.19,35,36 Also the
hydrogen level H (+/−), which may be identified with the
position of the charge-neutrality level is above the CBM. For
SnO2 our results for EBP are confirmed by other calculations.81

Recently, Mönch82 extracted branch-point energies from
measured Schottky barriers. He stated excellent agreement
between the results of our procedure with experimental values
for group III nitrides but found a slight overestimation of EBP

in the case of In2O3 and ZnO.
The results for EBP are listed and compared with experi-

mental data in Table II. The measurements of surface electron
accumulation for undoped In2O3 and doped samples indicate
values of EBP = 3.5–3.6 eV for the In2O3 polymorphs19,35 in
excellent agreement with the theoretical predictions.

In the case of wz-ZnO the Fermi-level stabilization energy
lies 0.2 eV below the CBM.22 An experimental value of EBP =
3.04 eV extracted from valence-band discontinuities to other
semiconductors83 is also somewhat smaller than the computed
one. However, from the knowledge of ZnO-AlN valence-band
offsets84 and that of the branch points in group-III nitrides a
characteristic energy EBP = 3.78 eV is derived for ZnO.36

Surface electron accumulation is also indicated by other
measurements,85 in accordance with our predictions.

Clear experimental data are not available for SnO2. How-
ever, there is also experimental support for a branch-point
energy EBP lying above the CBM.36 Agreement with other
calculations81 can be stated.

B. Ionization potential and electron affinity

The planar-averaged electrostatic potentials near the surface
of the studied TCOs are plotted in Fig. 4 for different
polymorphs (In2O3) or different orientations (SnO2). They
clearly show the surface barrier for electrons and the position
of the vacuum level. The positions of the QP conduction and
valence-band edges, Ec and Ev , are also given.
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18 wz-ZnO,42 and rt-

SnO2.
20 The top of the valence bands is used as energy zero. The

dashed-dotted lines indicate the branch-point energy-vacuum level.

The surface properties of In2O3 and Sn-doped In2O3

[indium-tin oxide (ITO)] are poorly known. Depending on
the doping concentration the electron affinity seems to vary
in the range of A = 4.1–5.0 eV (see Ref. 17 and references
therein). Together with a previously adopted gap of 3.6 eV,
ionization energies of I = 7.7–8.6 eV may be derived. Klein21

suggested values of A = 3.5 ± 0.2 eV and I = 7.1 ± 0.15 eV
for evaporated In2O3 films. In a more recent paper26 the same
author gave values of A = 4.45 eV and I = 8.05 eV for
ITO samples. Our theoretical values seem to overestimate
the experimental findings. The discrepancies to the largest
experimental values are of the order of 0.5 eV. As mentioned
above, one reason could be the neglect of vertex corrections
in the GW approximation. Apart from uncertainties in the
theoretical description, several problems of the real-structure
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FIG. 4. Planar-averaged electrostatic potential (solid line) near
the surface for bcc-In2O3(001), rh-In2O3(0001), rt-SnO2(001), rt-
SnO2(100), and wz-ZnO(0001) as computed within DFT. The QP
levels Ec and Ev are indicated by dashed horizontal lines. The vacuum
level is used as zero of energy.

surfaces such as doping influence, coverage (and hence surface
dipole), and sample quality may occur. Also the gap value of
3.6 eV taken from optical measurements deviates by 0.5 eV
from the recently predicted one,19 mostly due to the fact that
the lowest interband transitions are dipole forbidden in the
bixbyite structure.86

In the case of wz-ZnO, there is a wide range of measured
values. Jacobi et al.87 found electron affinities of A = 3.7,
4.5, and 4.6 eV in dependence of the surface orientation and
termination. Another electrically measured electron affinity
amounts to A = 4.64 eV.89 A value of A = 4.05 eV is derived
from studies of the semiconductor-electrolyte interface,88

which yields I = 7.45 eV taking into account the known gap.23

Another measurement gave I = 7.82 eV.16 All in all, these
experimental values are close to our theoretical prediction and
calculated values from the literature.90

Knowledge of the surface properties of SnO2 is poorer.
Measurements gave A = 4.44 eV88 which, in combination
with the gap of 3.6 eV measured for rt-SnO2,

23 yields an
ionization energy of I = 8.04 eV. In the case of tetragonal
SnO2, sometimes doped with Sb, a variation in the interval
I = 7.9–8.9 eV is reported.37 SnO2 is therefore the only TCO
where our predictions seem to underestimate the experimental
value. This might be connected with a possible influence of
ViGS at this surface (see below).

The experimental ionization energy of Si lies in the
interval I = 5.15–5.33 eV for different orientations and
reconstructions.16 These values lead to A = 4.0–4.2 eV
taking the Si gap value into account. Our values calculated
within the HSE+G0W0 framework seem to indicate a slight
underestimation of I and A by about 0.3 eV. One reason could
be dipole effects that are not included in the QP approach.

C. Band discontinuities for Si-TCO heterojunctions

The branch-point energies EBP as well as the electron
affinities A and the ionization potentials I in Table II are
used to compute two types of natural-band discontinuities
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the branch-point energy EBP. The horizontal lines show the alignment
via the vacuum level Evac. The calculated energies from Tables II and
III have been applied. The silicon VBM is used as zero of energy.

�Ec and �Ev (see Sec. III B and III C). The resulting
band offsets are listed in Table III and the band lineup
is shown in Fig. 5. In the case of the alignment via the
branch-point energies EBP as reference level only the Si-SiO2

interface represents a type-I heterostructure. For the Si-TCO
interfaces we observe �Ec < 0 and, hence, staggered type-II
heterojunctions.14 In the case of the Si-In2O3 interfaces we see
|�Ec| > Eg(Si). Therefore, these structures even represent a
misaligned type-III heterostructure14 sometimes also called
broken-gap heterostructure.91 Since this would imply that the
lowest conduction-band states on the oxide side of the interface
are energetically favored over the valence-band states in the
silicon, we predict a charge transfer upon interface formation
that should alter the interface dipole and shift the band edges
toward a stable type-II junction.

For the band offsets obtained by using the vacuum level
Evac as reference energy, the qualitative behavior is (cf.
Fig. 5) largely conserved. The only qualitative change between
the two alignment procedures occurs for the heterojunction
Si-SnO2. In contrast to the EBP alignment the vacuum-level
alignment yields a type-I heterostructure. There are several
possible reasons for this discrepancy. One is that the Tersoff
method32 does not take into account electrostatic effects
occurring at surfaces and interfaces. The existence of surface
dipole moments can have a strong influence on the values
of I and A and, hence, the band alignment, especially for
polar materials with ionic bonds. Since a real interface would
inevitably possess an interface dipole, it is clear that the band
discontinuities of Si-TCO heterostructures strongly depend on
the surface orientation and the interface structure. Mönch25

stated that the electric-dipole contribution can change the
valence-band offsets in semiconductor heterostructures by up
to 30%.

In order to investigate the influence of such a dipole,
we have calculated I and A for rt-SnO2 for two different

orientations, the nonpolar (001) direction and the polar (100)
direction. The values in Table II clearly indicate a significant
variation of the surface barrier with the surface orientation and
termination. Yet both orientations show the tendency for the
formation of a type-I heterostructure for Si-rt-SnO2 interfaces
as indicated by the positive band discontinuities �Ec and
�Ev in Table III. The variations of I and A with the surface
orientation, though considerable, are not sufficient to explain
the different sets of band offsets for these two materials.
Another possible reason is that interface states located in
the fundamental gap might play a very important role for the
Si-SnO2 interface. As a consequence the electron-affinity rule
would fail. Further investigations of SnO2 surfaces and their
interfaces with Si should be carried out in order to clarify the
discrepancy.

Experimental values for the band discontinuities are rather
rare. In the case of the Si-In2O3 heterojunction the cor-
responding barrier �Ec = −0.61 eV for electrons going
from In2O3 to Si has recently been measured by means of
photoinjection.92 Together with the bulk gaps Eg = 3.1 eV
(from optical absorption of In2O3) and Eg = 1.1 eV (for Si) a
valence-band discontinuity of �Ev = 2.6 eV is derived. The
combination of measured valence-band discontinuities �Ev =
2.1 eV for CdTe-In2O3 heterojunctions93 and �Ev = 0.75 eV
for Si-CdTe94,95 suggests a value �Ev = 2.85 eV for Si-In2O3

junctions applying the transitivity rule.14 Together with the
gap difference of about �Eg = 2.0 eV a conduction-band
discontinuity of about �Ec = −0.85 eV may be derived. Both
the type of the heterostructure (i.e., the signs of �Ec and
�Ev) and the order of magnitude are in agreement with our
predictions using two different band alignments (cf. Table III).

For the Si-ZnO interface band offsets �Ec = −0.4 eV and
�Ev = 2.55 eV have been estimated from measured electron
affinities and/or work functions of p-Si and n-ZnO.12 From
electrical measurements electron barriers of �Ec = −0.45 (n-
Si) or �Ec = −0.69 or −0.72 eV (p-Si) have been derived,11

which indicate an influence of the doping level. In addition,
there is a value �Ev = 2.7 eV for Ge-ZnO.96 Together
with �Ev = −0.17 eV for Si-Ge94,95 we can calculate an
offset �Ev = 2.53 eV for Si-ZnO, using the transitivity rule.
Employing the gap difference �Eg = 2.3 eV one derives
�Ec = −0.23 eV. All these values are in agreement with our
prediction of a type-II heterostructure.

Little is known about the electronic properties of the
Si-SnO2 interface. Only indirect information is available.
The valence-band discontinuity for CdS-SnO2 amounts to
�Ev = 1.2 ± 0.2 eV.97 Together with the value �Ev = 1.55
eV for Si-CdS interface94,95 one obtains �Ev = 2.75 eV
for Si-SnO2 junction applying the transitivity rule.14 With
the gap difference �Eg = 2.5 eV a conduction-band offset
�Ec = −0.25 eV can be derived. While this prediction is
in agreement with the alignment via EBP with regard to the
type of the junction, it actually falls halfway between the
two contradicting sets of band offsets derived via the two
different alignment methods, so that it cannot really serve as
an indicator, which of this two methods gives the better result
for the band discontinuities.

All in all, the experimental data also indicate a misaligned
type-II heterocharacter of the Si-TCO interfaces, in agreement
with our predictions.
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V. CONCLUSION

Modern quasiparticle theory has been applied to the
transparent conducting oxides In2O3, ZnO, and SnO2. The
resulting band structures with rather accurate fundamental
energy gaps were used to compute the branch-point energies
for the Si as well as, for the purpose of comparison, for SiO2.
A combination with surface calculations allows the derivation
of electron affinities and ionization energies (i.e., the absolute
positions of the conduction-band minima and valence-band
maxima with respect to the vacuum level). For this, the bulk
and surface electronic structures have been aligned by means
of the electrostatic potentials.

The results were used to derive conduction-band and
valence-band offsets for heterostructures of silicon with the
oxides. The alignment of the electronic structures across the
heterojunction was made using both the branch-point energies
and the vacuum levels, resulting in two different sets of
natural-band offsets. The obtained values have been compared
and discussed in the light of the limited experimental data
available.

The two alignment methods give almost the same results
for the benchmark Si-SiO2 interface. It represents a type-I

heterostructure with relatively large band offsets �Ec and
�Ev . The application of both alignment methods yields type-II
heterojunctions for the Si-In2O3 and Si-ZnO interfaces. In
the In2O3 case even a tendency to a type-III heterostructure
is visible. Only in the case of the Si-SnO2 interface the
alignments via EBP and Evac give rise to qualitatively opposite
results, a type-II or a type-I heterostructure, respectively.
The type-II behavior seems to be in agreement with exper-
imental indications. We conclude that for this heterojunction
electronic states in the fundamental gaps play an important
role.
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R. Schafranek, S. Harvey, and T. Mason, Thin Solid Films 518,
1197 (2009).

18F. Fuchs and F. Bechstedt, Phys. Rev. B 77, 155107 (2008).
19P. D. C. King et al., Phys. Rev. B 79, 205211 (2009).
20A. Schleife, J. B. Varley, F. Fuchs, C. Rödl, F. Bechstedt, P. Rinke,
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