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Cubic inclusions in hexagonal AlN, GaN, and InN: Electronic states
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Modern quasiparticle calculations based on hybrid functionals and the GW approximation or a transition-state
approach are used to predict natural band discontinuities between wurtzite and zinc-blende polytypes of AlN,
GaN, and InN by two alignment methods, a modified Tersoff method for the branch-point energy and the
Shockley-Anderson model aligning electrostatic potentials. We find a type-I heterostructure behavior for cubic
layers embedded in wurtzite for GaN and InN, while AlN tends to a type-II heterostructure behavior. In addition,
the electronic states of wurtzite-zinc-blende superlattices are studied in detail with respect to their energy position
and wave-function localization. While the lowest electron states are localized in the cubic inclusion for all nitrides,
the localization of the uppermost hole states is less clear but tends to be in the hexagonal matrix. The influence
of the built-in internal electric fields is discussed.
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I. INTRODUCTION

The group-III nitrides AlN, GaN, and InN have acquired
technological importance for light-emitting and laser-diode as
well as electronic-device applications. The three nitrides crys-
tallize in wurtzite (wz) structure under ambient conditions.1

Strain-free wz crystals belong to the P 63mc (C4
6v) space

group. Therefore, a key property of wz nitrides is their large
spontaneous polarization field,2,3 which allows an additional
tailoring of electronic properties. However, the group-III
nitrides can also be grown in zinc-blende (zb) structure by
means of different epitaxy techniques such as molecular beam
epitaxy (MBE).4 The corresponding space group is F 4̄3m

(T 2
d ). Figure 1 depicts possible unit cells of wz and zb

structures. In [0001] direction, wz is characterized by the
stacking sequence ABABAB. . . with each repeated period
perpendicular to the basal plane, whereas zb has the sequence
ABCABC. . . in [111] direction. Each letter stands for a bilayer,
an ordered pair of cation and anion layers. The letters A, B,
and C indicate different hexagonal points, i.e., lateral positions
of the bilayers as shown in Fig. 1. Taking the crystal system,
hexagonal (H ) or cubic (C) and the translational symmetry in
stacking direction into account, one also speaks about 2H (wz)
and 3C (zb) polytypes. A consequence of the polytypism can
be stacking faults or cubic inclusions in the hexagonal matrix
of AlN, GaN, and InN.5,6 Such extended defects have also
been studied theoretically, e.g. by first-principles calculations
of stacking-fault formation energies7 or the consequences for
the electronic states.8

In the search of new concepts for the reduction of power
consumption in large-scale integrated circuits, nanowires
(NWs) in which the device size is even further reduced
are intensively studied. Moreover, semiconductor NWs are
emerging as versatile building blocks for photonic devices.
Such nanorods have also been successfully made of nominally
wz nitrides.9–11 Theoretical studies using empirical methods12

suggest the existence of critical NW diameters, where the
NW stackings turn out to be bistable forming both wz and
zb structures if zb is energetically more stable than wz in
bulk. This bistability has been studied for several common
III-V compounds (see e.g. Ref. 13). Recently, it has been
demonstrated experimentally that nitride NWs (e.g. made by

GaN) can be grown as cubic polytype by plasma-assisted MBE
despite that the wz is favored in bulk.14 The corresponding
luminescence lines in zb GaN are shifted toward lower
energies by 0.2 eV with respect to wz GaN. However, there
is also an intense luminescence peak in between, which is
attributed to excitons bound to stacking faults that form at the
cubic-hexagonal interface. Stacking changes have been also
observed by other groups.15

The observation of a stacking variation in [0001]/[111]
direction suggests the possibility of polytypic superlattices or,
in general, heterocrystalline structures16 also for the group-III
nitrides. Their properties are determined by the electronic
states in the entire system and the line-up of the allowed
empty or occupied bands at the interface between the wz

and zb polytypes depicted in Fig. 1. The key questions
concern the magnitude and sign of the band discontinuities
between wz matrix and cubic inclusion, especially the localiza-
tion of the highest occupied or lowest empty electronic states
in a heterocrystalline but homomaterial system. In the present
paper, these questions are answered using the most modern
electronic-structure theory.

II. COMPUTATIONAL METHODS

A. Atomic structures

The atomic geometries of the underlying zb and wz

polytypes as well as the superlattices that model the heterocrys-
talline structures are derived from total-energy minimizations
within the ab initio density-functional theory (DFT). The
exchange-correlation (XC) functional is described within a
semilocal approximation, more precisely the generalized-
gradient approximation (GGA). We use the novel AM05
functional,17 which gives excellent results for the structural and
elastic properties of group-III nitrides.18 All DFT calculations
are performed within the implementation in the Vienna ab
initio simulation package (VASP).19 The pseudopotentials are
generated by means of the projector-augmented-wave (PAW)
method20 that allows for the accurate treatment of the valence
s and p electrons as well as the semicore Ga 3d and In 4d

states. In the regions between the cores, the wave functions
are expanded in plane waves up to a kinetic-energy cutoff
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FIG. 1. Wurtzite (a) and zinc-blende (b) structures. Primitive (wz)
and nonprimitive (zb) hexagonal unit cells are shown. Open circles
and black dots denote cations and anions, respectively.

of 500 eV. The Brillouin zone (BZ) is sampled with a
mesh of 8 × 8 × 8 or 8 × 8 × 6 (AlN) and 16 × 16 × 16
or 16 × 16 × 12 (GaN and InN) Monkhorst-Pack (MP) k
points21 in the zb or wz case. The resulting cubic lattice
constants are a0 = 4.37, 4.50, and 5.01 Å for AlN, GaN,
and InN, while the hexagonal lattice constants amount to
a = 3.11, 3.18, and 3.55 Å as well as c = 4.98, 5.18, and
5.74 Å. The internal-cell parameters are u = 0.380, 0.376,
and 0.377. The stabilization energies, i.e., the total-energy
differences �Ezb−wz per cation-anion pair, �Ezb−wz = 47,
15, and 24 meV do not show a clear chemical trend.

For the superlattices the number of MP mesh points in
the BZ is reduced to 16 × 16 × 1. The superlattices used
are illustrated in Fig. 2. We study superlattices with 18
cation-anion bilayers, (2H )6(3C)2 with cubic inclusions of
thickness D ≈ 2

√
3a0 ≈ 3c and a total superlattice period of

d ≈ 9c. The lattice constants of the two polytypes differ in the
plane perpendicular to the c axis. Since the vertical extent of
the cubic inclusions is much smaller than that of the matrix,
we allow a small biaxial strain in the cubic layers by fixing
the a lattice constant to the 2H value. More precisely, a small
biaxial strain due to the lateral lattice misfit of a (wz) and
a0/

√
2 (zb) of about 0.6, 0.1, and 0.3% for AlN, GaN, and

InN is taken into account. The bilayer thickness of the cubic

inclusions is then set to
√

2
3a (assuming an almost ideal c/a

ratio), which leads to a lattice constant of d = 6(c +
√

2
3a)

of the superlattices. We study cubic inclusions (3C)2 with
6 bilayers embedded in (2H )6 in order to directly compare
to (2H )9 superlattices of pure wurtzite. Such a comparison
may indicate the energetic position of electronic states of the
cubic inclusions (3C)2 instead of (2H )3 near the band edges
around the fundamental gap of 2H after an appropriate energy
alignment by means of the electrostatic potentials.

B. Quasiparticle electronic structure

The Kohn-Sham eigenvalues of the DFT19,20 cannot be
identified with the energies of single electronic excitations.
Instead, the quasiparticle (QP) equation with a spatially
non-local, non-Hermitian, and energy-dependent XC self-
energy operator has to be solved.22,23 In the last years, an

FIG. 2. Structure of the unit cell of a (2H )6(3C)2 superlattice that
model the cubic inclusion in the hexagonal matrix. The bond stacking
is shown in the (112̄0) plane. The nominal interfaces are indicated by
horizontal lines.

efficient method based on Hedin’s GW approximation22,23

has been developed24 to achieve an iterative solution of the
QP equation. Replacing the XC self-energy by the functional
derivative of the non-local HSE06 hybrid functional25–27(using
a parameter of ω = 0.15 a.u.−1 instead of ω = 0.11 a.u.−1, see
disambiguation in Ref. 28) provides a zeroth approximation
that gives eigenvalues and eigenfunctions close to the final QP
quantities.29 Thereby, we are using the PBE pseudopotentials30

generated for the GGA XC functional. After the first iteration
of the QP equation. eigenvalues are obtained (cf. Table I)
that give energy gaps that are, e.g. for nitrides, close to the
experimental values.18,31

For wz-zb superlattices with about 36 atoms in the unit
cell, the above-described method is too expensive, especially
because of the spatially non-local starting point and the
convergence requirements to the self-energy with respect to
the number of k points, bands, and plane waves. For that
reason, we also apply an approximate treatment to compute
the QP energies. This is the recently developed LDA-1/2
method,32 which is based on the idea of Slater’s transition
state.33,34 We apply this method by preparing a pd-like
excitation in an electronic system for which XC is treated
by the AM05 functional.17 It leads to band structures for the
group-III nitrides that around the fundamental gap and for the
d bands of GaN and InN are in good agreement with measured
spectroscopic data.32,35 The computed fundamental energy
gaps Eg in Table I are indeed close to the measured values.
Other parts of the band structure, e.g. the energy positions of
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TABLE I. Energy gap Eg and branch-point energies EBP (with respect to the valence-band maximum) for zb and wz nitrides. For zb

AlN, besides the direct �-� gap also the smaller indirect �-X gap is listed. The resulting absolute positions of the conduction band minimum
Ec and valence band maximum Ev as well as the natural band discontinuities �Ec and �Ev between zb and wz are also given. The energy
values have been derived from the QP eigenvalues computed within the HSE06+GW approach.29 The corresponding values obtained from
the LDA-1/2 treatment are given in parenthesis. Two different alignment methods have been applied to derive the band discontinuities.
Besides the alignment via the branch-point energies, an additional alignment has been made in the LDA-1/2 framework using the spatially
averaged electrostatic potentials whose differences �V̄ = 0.15 (AlN), 0.01 (GaN), and 0.03 eV (InN) however remain small. The resulting
band discontinuities are given as a second value in parenthesis. All values are in electron volt.

Compound Crystal Eg EBP Ec Ev �Ec �Ev

AlN zb (�-�) 6.271 (6.176) 3.422 (3.489) 2.849 (2.687) −3.422 (−3.489) 0.108 (0.098, 0.212) −0.069 (0.058, −0.090)
zb (�-X) 5.198 (5.429) 1.776 (1.940) 1.181 (1.045, 0.960)

wz 6.310 (6.331) 3.353 (3.546) 2.957 (2.785) −3.353 (−3.546)

GaN zb 3.427 (3.514) 2.366 (2.556) 1.061 (0.958) −2.366 (−2.556) 0.170 (0.154, 0.190) 0.062 (0.035, 0.022)
wz 3.659 (3.703) 2.428 (2.591) 1.231 (1.112) −2.428 (−2.591)

InN zb 0.414 (0.543) 1.487 (1.430) −1.073 (−0.887) −1.487 (−1.430) 0.131 (0.099, 0.104) 0.093 (0.069, 0.057)
wz 0.638 (0.711) 1.579 (1.499) −0.941 (−0.788) −1.579 (−1.499)

the lowest s-like valence bands and the total widths of the
valence bands, come out less accurate with an underestimate
of their binding energies. However, for the discussion of the
lowest empty and highest occupied QP electronic states in
the heterocrystalline structures, cubic inclusions in hexagonal
matrices (modeled by the superlattices described above),
the LDA-1/2 approximation32 should give excellent results
for the near-band-edge states. Since wz and zb nitrides are
treated within exactly the same approximations, inaccuracies
in interband distances, occurring eventually, should cancel
each other to a large extent.

III. NATURAL BAND DISCONTINUITIES

In a first step, we calculate the band discontinuities �Ev

and �Ec between the valence bands and conduction bands,
respectively, of zb and wz nitrides. The positive sign of
�Ev (or �Ec) indicates that the embedded cubic inclusion
represents a quantum well for holes (or electrons) in the
cubic regions. Thereby, �Ev�Ec > 0 describes a type-I
hetero(crystalline)structure while �Ev�Ec < 0 gives rise to
a type-II hetero(crystalline) structure. In a first step, we
use a “macroscopic” approach,36 which only requires the
calculation of the QP band structures of the corresponding bulk
compounds. The energy alignment of the two band structures
for the cubic and hexagonal nitride polytypes asks for a
common universal reference level. Frensley and Kroemer37

suggested to use an internal reference level, which may be
pinned at the interface in the presence of virtual gap states.
It may be identified with the branch-point energy.38,39 In the
spirit of the Shockley-Anderson model,40 the vacuum level
takes over the role of the reference level if no interface states
are present. The vacuum level is however strongly influenced
by the electrostatic potential.

In a first step, we apply the branch-point energy EBP

of each material as common energy zero. At the branch-
point energy, the band states change their character from
predominantly acceptor-like (usually valence-band states) to
mostly donor-like (usually conduction-band states) electronic

states. According to Tersoff,38 the related charge transfer
leads to an intrinsic interface dipole that tends to lineup the
energy bands at both sides of an interface in a way that the
dipole itself vanishes. We compute the reference levels EBP

according to an approximate method that was successful for
several material combinations.36,39 The calculations have been
performed using the QP band structure resulting from the full
HSE06+GW scheme [see Fig. 3(a)] as well as the approximate
LDA-1/2 method [see Fig. 3(b)]. For comparison, another
band alignment based on the average electrostatic potentials
V̄ resulting from the LDA-1/2 approach for the zb and wz

polytypes has been made. Although ionization energies and
electron affinities are not explicitly derived, instead only the
positions of the band edges Ec and Ev with respect to V̄

are determined. This procedure yields the same results as the
Shockley-Anderson model with the vacuum-level alignment.40

We find that the displacements �V̄ due to the potential
differences between zb and wz are small, �V̄ = 0.15 eV
(AlN), 0.01 eV (GaN), and 0.03 eV (InN). The second type
of “natural” band discontinuities, �Ec and �Ev , arises from
the absolute band-edge positions with respect to V̄ in both
polytypes.

The results for the band discontinuities �Ec and �Ev

are given in Table I and Fig. 3 together with those for the
fundamental energy gap Eg and the corresponding relative
positions Ec and Ev of the conduction-band minimum (CBM)
and the valence-band maximum (VBM), respectively. In the
case of zb AlN, the indirect �-X gap and the conduction band
position Ec at the X point are listed in addition to the direct
�-� gap. The computed values are slightly different from those
given in Ref. 36 mostly due to the different atomic geometries
used. The geometries optimized here by means of the AM05
XC functional are closer to the experimentally determined
structures. We find that the band discontinuities �Ev and �Ec

between zb and wz are relatively small. Only the CBM at X

in zb AlN exhibits a large distance of about 1 eV to the CBM
at � of wz AlN. Thereby the absolute values of the band dis-
continuities are in general much larger in the conduction-band
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FIG. 3. (Color online) Band lineups for cubic inclusion embedded in hexagonal environment from QP calculations. The branch-point
energy (here: energy zero) and the values from Table I have been used for alignment. Two different approximations, (a) full HSE06+GW and
(b) approximate LDA-1/2, have been applied. The shaded areas illustrate the fundamental gaps in the regions of the cubic inclusions.

case whereas the valence bands are almost aligned (see also
Table I). The combination of the two band-structure methods
with the two alignment procedures described above yields
three different sets of natural band discontinuities �Ec and
�Ev given in Table I. The important information is that
the values are only weakly dependent on the procedure. The
average deviation of �Ec (�Ev) amounts to 36 meV (40 meV)
for GaN and 32 meV (26 meV) for InN. Only for AlN the
variation approaches larger values up to 0.1 eV for �-� or 0.2
eV for �-X. The positive signs indicate type-I heterocrystalline
structures apart from the AlN case where the holes should not
be localized within the cubic inclusion in two of the three
approaches used. In the case of the AlN, cubic inclusions
represent heterocrystalline structures of type II (at least within
two procedures) where only the electrons are localized in
the zb layers. The strength of the localization depends on
the � or X character of the electrons. The almost vanishing
valence-band offsets between cubic and hexagonal group-III
nitrides do not indicate the validity of the common anion rule.41

On the contrary, Fig. 3 clearly shows large valence-band offsets
between two different wz group-III nitrides of about 0.93
(0.96) eV (AlN-GaN) and 0.84 (1.09) eV (GaN-InN) using
the HSE06+GW (LDA-1/2) approach and the BP alignment
of the order of measured values42,43 despite the common anion.

The computed energy values in Table I are in rough
agreement with other band-structure calculations, especially
for AlN and GaN. Examples are the values �Ec = 0.162 eV
(AlN) and 0.154 eV (GaN) at � obtained from DFT-LDA
computations without QP corrections.44 Similar values of
�Ec = 0.150 eV (GaN) and 0.120 eV (InN) have been ob-
tained by Yeh et al.45 The absolute values for the valence-band
offsets are much smaller and may vary in sign. For instance,
Murayama and Nakayama44 (assuming that no dipole potential
exists across the interface) found �Ev = −56 (AlN) and
−34 (GaN) meV. Dalpian and Wei derived a value of �Ev =
−22 meV for GaN46 by using the (KS) eigenvalues of the core
levels as calculated within DFT-GGA. These valence-band
discontinuities indicate a type-II heterocrystalline behavior
which is different from the findings based on the alignment via
the branch-point energy (cf. Table I). However, this difference
can most likely be attributed to the QP corrections that are
missing in Ref. 46. Using the KS eigenvalues of the Ga3d states

(calculated within GGA) to perform the energy alignment, we
also found �Ev < 0 in agreement with Dalpian and Wei.

Using the averaged electrostatic potentials to achieve
the energy alignment of the wz and zb band structures,
contradictory results have been derived for the discontinuities
within DFT-LDA. Stampfl and Van de Walle7 predicted a
type-II character with �Ec = 0.27 eV and �Ev = −0.07 eV
for GaN. The DFT-LDA superlattice calculations of Majewski
and Vogl8 qualitatively agree with our findings for AlN and
GaN (see Table I and Fig. 3). They also report a band
lineup for zb/wz leading to a type-I junction.14 The values
obtained by Majewski and Vogl including (neglecting) atomic
relaxations of the interfaces are �Ev = 0.02 (−0.10) eV and
�Ec = 1.30 (1.40) eV for AlN and �Ev = 0.04 (0.02) eV and
�Ec = 0.12 (0.14) eV for GaN. The small differences between
the values outside and inside the parenthesis indicate a weak
sensitivity to the details of the computations. Nevertheless,
for unrelaxed interfaces with (�Ev = −0.10 eV)8 they also
found a type-II heterocrystalline character for AlN, in contrast
to the relaxed case. In a supercell calculation with slightly
strained zb GaN, Majewski and Städele47 confirmed the
previous results with �Ec = 175 meV and �Ev = 35 meV
for a type-I system. The results for GaN by Bandić et al.48

are shifted with respect to those of Majewski and Vogl8

since the interface dipole contribution described by the
difference in electrostatic potentials is not taken into
account.

Taking the accuracy of the band-structure and alignment
methods into account, one has to point out that no final
conclusion can be made for the valence-band lineup between
cubic and hexagonal AlN. We have to point out that our results
for GaN and InN, do not follow the simplified argument that the
VBM of a pure compound in wz structure is usually higher than
that in the zb structure.46 This should be due to the crystal-field
splitting, which moves the uppermost occupied wz level
toward higher energies. Indeed, this effect is present. However,
we claim that the discussion of the band structures of isolated
polytypes is insufficient. Rather, one needs an alignment via
a reference level that accounts for the electrostatics at the
interface.

In summary, the manifold first-principles results ask for
some comments: (i) in general, the (natural) valence-band
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offsets �Ev between zb and wz for the three nitrides are small,
|�Ev| � 0.1 eV, independent of the approach that has been
used for this estimation. Most important is the treatment of
exchange and correlation in the underlying electronic-structure
calculations. Conventional DFT results using GGA or local-
density-approximation (LDA) functionals are less reliable
on predicting valence-band offsets than hybrid functionals
or, much better, hybrid-functional-based QP calculations.49–51

(ii) The positive or negative values �Ev may depend on the
internal or external reference level used to align the bulk bands
on both sides of the zb/wz interface.

At first glance, the values �Ev > 0 in Table I seem to
violate the rule that the VBM in wurtzite should usually
be higher in energy than that in zb crystals due to the
crystal-field splitting and intervalence band repulsion that
exist in wz.46 However, the same alignment procedure and
electronic-structure calculations lead to values �Ev < 0 for
conventional III-V compounds GaAs, InP, InAs, and InSb.52

We conclude that the crystal field itself with lattice parameters
c/a > 1.633 and u < 0.375 for conventional III-V compounds
(crystallizing in zb under ambient conditions) in wurtzite
geometry and c/a � 1.663 and u > 0.375 for III-nitrides
(usually crystallizing in wz) obviously determines the sign
of the small |�Ev| values.

IV. ELECTRONIC STRUCTURE OF
HETEROCRYSTALLINE SUPERLATTICES

In the following, the predictions of band edges in zb-
wz heterocrystalline systems by means of a branch-point
alignment or the average electrostatic potential method (cf.
Sec. III) are checked using electronic-structure calculations
for real geometries. As described in Sec. II, the model system
of a cubic inclusion (ABC)2 in a hexagonal environment of
layers (AB)6 is studied in the form of a superlattice with a
unit cell (ABC)2(AB)6 consisting of 18 cation-anion bilayers.
The atomic geometries near the interfaces have been relaxed
until the remaining forces are smaller than 1 meV/Å. The

resulting quasiparticle-like LDA-1/2 band structures of the
supercell systems are presented in Fig. 4 along two high-
symmetry directions �-M and �-K of the two-dimensional
(2D) Brillouin zone of a 2D hexagonal Bravais lattice. They
correspond to the same directions in the wz crystals. In the
cubic case, these directions perpendicular to the [111] direction
correspond to [21̄1̄] and [101̄]. The (2H )6(3C)2 superlattice
bands are compared to the QP bands of the wz nitrides
projected onto the 2D BZ (shaded regions in Fig. 4). In the
practical calculations, these shaded regions have been obtained
by computing the superlattice bands of a (2H )9 superlattice.
The energy alignment of the band structures of the two
superlattices (2H )6(3C)2 and (2H )9 is made by aligning the
laterally and vertically averaged electrostatic potentials of the
two different superlattice systems. Details of the valence-band
structures are shown in Fig. 5.

For all three nitrides, the superlattice band structures in
Figs. 4 and 5 clearly indicate the appearance of localized
states close to the band edges of the embedding hexagonal
material as can be seen from the subbands in the fundamental
gap of the projected wz band structure. For the bottom of
the conduction bands near �, such subbands occur in a
distance of about 0.40 (AlN), 0.15 (GaN), and 0.25 eV (InN).
While for InN and GaN, only one electron subband occurs,
three subbands are visible for AlN. This may be a consequence
of the deeper quantum wells for bulk X-derived electronic
states. As can be seen in Fig. 5, two twofold-degenerate
(one two twofold-degenerate) hole subbands occur at � for
InN (GaN). The uppermost nondegenerate band of the AlN
superlattice is resonant with the 2H bulk bands. Only in certain
distance from the � point it becomes of subband character. The
reason for the different degeneracies of the uppermost bands is
similar to that which causes a negative crystal-field splitting in
AlN going from bulk zb to bulk wz with an ordering of the �5

and �1 valence states reversed to the GaN and InN cases. The
maximum energy differences of the uppermost superlattice
band at � to the pure 2H states amount to −60 (AlN),
65 (GaN), and 84 meV (InN).
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FIG. 4. (Color online) Band structure of (2H )6(3C)2 superlattice vs the 2D hexagonal BZ. The shaded region represents the projected bulk
band structure of wurtzite crystal: (a) AlN, (b) GaN, and (c) InN.
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FIG. 5. (Color online) Top of the valence bands near � along the �-K and �-M directions. The black [red] lines represent bands of the
(2H )6(3C)2 [(2H )9] superlattices. The valence-band maximum of 2H is used as energy zero. (a) AlN, (b) GaN, and (c) InN.

At first glance, the subband structures seem to indicate
type-I heterocrystalline structures for the cubic inclusions
embedded in the hexagonal environment for GaN and InN
while for AlN the band structure in Fig. 5(a) suggests type II.
The characteristic subband energies with respect to the 2H

band extrema also approach the order of magnitude of the
values for the band discontinuities. Nevertheless, the simplified
picture of rectangular quantum wells suggested by the band
lineups in Sec. III has to be proven. There are two other
pecularities in the AlN case. (i) The most probable type-II
character suggested by the macroscopic approach is at least
questionable outside the � region. (ii) The lowest electron
subbands in Fig. 4(a) indicate an indirect character of the
heterocrystalline structure. The absolute subband minima are
situated at the M points of the hexagonal BZ. The indirect
�-X gap of 5.482 eV is about 0.1 eV smaller than the direct
�-� gap of 5.581 eV, reflecting probably the indirect character
of bulk AlN. A third pecularity appears for GaN and InN.
(iii) According to the simple picture of rectangular quantum
wells for electrons and holes within the cubic regions the
fundamental gaps of the superlattices Eg(sl) are expected to
be larger than the bulk gap Eg(zb) of the cubic inclusions.
The opposite is the case with Eg(sl) = 3.30 (0.35) eV and
Eg(zb) = 3.35 (0.54) eV for GaN (InN). Such an inverted
energetical ordering also seems to appear in measured spectra.
Indeed, for GaN, a stacking fault luminescence at 3.27 eV,
much below the zb gap, has been observed.14

Such observations ask for a clear interpretation. We focus
on a discussion of the Figs. 4(c) and 5(c) for InN. Close
to the � point there is only one electron subband, probably
indicating that the quantum well in Fig. 3 is not deep enough
and the thickness of the cubic inclusion is small. A rough
estimate with an electron mass m∗ = 0.1m and a thickness of
d = 14.4 Å yields a confinement energy in an infinite potential
well of h̄2

2m∗ (π
d

)2 = 1.24 eV much larger than the band disconti-
nuity �Ec = 0.13 eV (Table I). This may qualitatively explain
why in a real structure only one bound state exists. However,
its energy of 0.24 eV below the conduction band minimum
of 2H -InN is larger than expected from the conduction band
discontinuity. The reasons are real-structure effects and the
stronger confinement due to the additional confinement in

the triangular potential well induced by the built-in internal
electric field due to the hexagonal-cubic interfaces (see below).
As discussed above, apart from the AlN case, Figs. 4 and 5
also show hole bands very close to the top of the mapped 2H

valence bands. The energy distance at � amounts to 0.08 eV
for InN, a value that is much smaller than that for the electrons,
seemingly in agreement with the much smaller quantum-well
depth �Ev in Table I and Fig. 3. The tops of the superlattice
valence bands at � are twofold degenerate. The threefold
degeneracy of the bulk 3C electronic structure is lifted in the
crystal field due to the reduced symmetry C1

3v of (2H )6(3C)2,
which is even lower than the C4

6v symmetry of the hexagonal
polytype 2H .16

The stronger confinement of electrons and holes demon-
strated in Figs. 4 and 5 in comparison to the corresponding
quantum-well structures in Fig. 3 derived from the natural band
discontinuities in Table I is due to additional electric fields E

in the 3C and 2H layers within a superlattice period. They
give rise to an additional macroscopic saw-tooth potential,
as clearly demonstrated in Fig. 6, for the laterally averaged
single-particle potential V (z) in the superlattice system. In
[111]/[0001] direction, the maxima and minima of the atomic
oscillations in V (z) decrease (increase) in the 3C (2H ) part.
This is a consequence of the interface charges between the
two polytypes or the change �P between the spontaneous
polarization field in 2H and the piezoelectric polarization field
in 3C. Parallel to the superlattice axis it holds3,53

�P = −ε0�E = −ε0

e

[
d

dz
V (z)

∣∣∣∣
2H

− d

dz
V (z)

∣∣∣∣
3C

]
. (1)

For InN, the variation of V (z) within a superlattice cell
amounts to 0.25 eV. This leads to a change in the electric
fields of �E = 2.2 MV/cm or the polarization of �P =
−1.9 × 10−3 C/m2. With 0.30 eV, �E = 2.9 MV/cm and
�P = −2.6 × 10−3 C/m2, the values are slightly larger for
GaN. The electrostatic effect is more pronounced for AlN.
We find a variation of the atomic oscillations through the
superlattice of about 1.38 eV, which is almost by a factor 5
larger than in the InN heterocrystalline structure. The values
for the electric field �E = 13.7 MV/cm and polarization
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FIG. 6. (Color online) Laterally averaged single-particle poten-
tials V (z) along the superlattice axis. The atomic oscillations and the
saw-tooth character of the envelope are clearly visible. The absolute
minimum and maximum of the potential indicate the interfaces
between cubic inclusion and hexagonal environment where the
electrons or holes tend to be localized. (a) AlN and (b) InN. The
potential for GaN is similar to that of InN.

field �P = −12.1 × 10−3 C/m2 are correspondingly larger.
This polarization value multiplied with the average electronic
dielectric constant of the 3C and 2H polytypes3 gives rise to
spontaneous polarization fields (more precisely, the difference
of spontaneous polarization in 2H and piezoelectric field in
3C) of about −55 × 10−3 (AlN), −14 × 10−3 (GaN), and
−16 (InN) ×10−3 C/m2, smaller than the values of −81 ×
10−3, −29 × 10−3, and −32 ×10−3 C/m2 recommended by
Vurgaftmann et al.54 The underestimation of the polarization
fields may be traced back to the presence of the piezoelectric
field in the 3C regions.

The single-particle potentials in Fig. 6, especially the
additional saw-tooth potentials, indicate that the picture of
rectangular quantum-well structures with depths �Ec or �Ev

shown in Fig. 3 is incomplete. The band lineups have to be
modified by the additional saw-tooth potential. Consequently,
the bottom of the quantum well for electrons and for the holes
(at least for GaN and InN) has to be modified as schematically
drawn in Fig. 7. The additional triangular potential wells
have two effects on the electronic states: (i) the confinement
of electrons and holes in the cubic inclusions is seemingly
increased. (ii) In addition, the maxima of the wave-function
squares are displaced against each other and hence reduce
the optical-transition matrix elements. This effect is usually
identified with the quantum confined Stark effect (QCSE).55

The latter effect is clearly demonstrated in Fig. 8 for
the electrons. In Fig. 8, the wave-function squares of the
lowest electron subbands and the highest hole subbands are
plotted versus the heterocrystalline structure studied. States
with relatively large in-plane kinetic energies with a wave
vector representing an M point at the BZ boundary have
been chosen. At least for electrons, the largest distances to
the edge of the projected bulk bands and the largest number
of subbands appear. The left panels in Fig. 8 for AlN, GaN,
and InN clearly show the localization of the electron wave
function in the area of the cubic inclusion. The tunneling of
the wave functions through the 3C-2H interfaces into the wz

regions is rather weak. The maximum of the probability to find
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FIG. 7. (Color online) Band lineup for a thin 3C inclusion in an
extended 2H matrix for InN (schematically). The internal electric
field is taken into account. The lowest resulting electron and hole
levels are indicated by horizontal dotted lines.

an electron is displaced along the [111]/[0001] direction from
its midwell position in a rectangular quantum well toward the
upper interface. The results for the electrons are in complete
agreement with the schematic band lineup drawn in Fig. 7.

However, for the holes, the simplified picture presented in
Fig. 7 has to be strongly modified as shown in Fig. 8 (right
panels). The maxima of the hole distributions appear near the
lower 2H -3C interfaces, however at the 2H side, in contrast to
the expectation from the rectangular quantum wells in Fig. 3
(perhaps with exception of AlN). The reason is the fact that the
triangular quantum well due to saw-tooth potential in Fig. 7 is
more important for holes, because the rectangular contribution
defined by the barrier height related to �Ev is small.

For instance, for InN, the energy lowering of about 0.25 eV
due to the QCSE is larger than the rectangular well (Fig. 3)
with a natural band discontinuity �Ev = 0.09 eV (Table I).
As another consequence of the QCSE, the fundamental gap
of the superlattice Eg(sl) = 0.35 eV is even smaller than the
gap Eg(zb) = 0.54 eV of 3C-InN. The findings for GaN and
AlN also show the appearance of localized hole states in the
2H matrix. In the case of AlN with almost aligned top of
the valence bands, the depth of the triangular polarization-
field-induced quantum well is 1.38 eV, much more important
than the rectangular contribution due to the small positive or
negative value �Ev = 0.06/ − 0.09 eV (Table I) of the natural
band offset. The existence of an almost triangular potential
well is also pointed out by the wave-function square, which
indicates a high probability to find the hole on the 3C side and
not only in the 2H region of the interface [see Fig. 8(a), right
panel].

V. SUMMARY AND CONCLUSIONS

The electronic structure of cubic (zb) inclusions in hexag-
onal (wz) matrices has been studied by means of the QP
electronic-structure theory and a superlattice method. The cal-
culation of the natural band discontinuities �Ec and �Ev and
the corresponding band lineup yields type-I hetero(crystalline)
structures for InN and GaN, while a type-II character has
almost been found for AlN. Thereby, the rectangular quantum
wells of the electrons are relatively deep with �Ec = 0.1–

125108-7



BELABBES, DE CARVALHO, SCHLEIFE, AND BECHSTEDT PHYSICAL REVIEW B 84, 125108 (2011)

FIG. 8. (Color online) Wave-function squares of the lowest empty (left panel) and highest occupied (right panel) states at M together with
two parallel (112̄0) superlattices planes. The large circles represent cations whereas the small circles indicate nitrogen atoms. The nominal
interfaces are indicated by dashed horizontal lines. (a) AlN, (b) GaN, and (c) InN.

0.3 eV. For X electrons in AlN with almost vanishing wave
vectors, the value �Ec = 1.4 eV is significantly increased.
The situation for holes is completely different. The quantum
wells in the cubic inclusions are rather flat for GaN and InN
with �Ev = 0.06 or 0.09 eV. For AlN, the value of �Ev is not
exactly fixed and can even have a changed sign. However, the
small |�Ev| do not indicate the validity of the common anion
rule.

The predictions for the band lineups for cubic inclusions
in hexagonal matrices have been proved by studying the
electronic structure of such heterocrystalline structures within
supercell geometries. For all group-III nitrides, AlN, GaN,
and InN subbands of localized states within the fundamental
gaps of the projected 2H band structures have been observed,
a fact that seems to confirm the picture of the band lineups,
at least for GaN and InN. However, a dramatic influence of

the internal electric fields due to the pyroelectricity as well
as piezoelectricity of the wz crystals and the piezoelectricity
of the zb materials has been found. The localization of the
electron states is displaced toward one of the two 3C-2H

interfaces. The field effect on the hole states is more drastic.
The maximum of the hole distributions has been observed near
the other 3C-2H interface but not in the cubic inclusion, rather
on the 2H side.
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(1997).
49C. Mietze, M. Landmann, E. Rauls, H. Machhadani, S. Sakr,

M. Tchernycheva, F. H. Julien, W. G. Schmidt, K. Lischka, and
D. J. As, Phys. Rev. B 83, 195301 (2011).

50P. G. Moses, M. Miao, Q. Yan, and C. G. V. de Walle, J. Chem.
Phys. 134, 084703 (2011).

51A. Alkauskas, P. Broqvist, F. Devynck, and A. Pasquarello, Phys.
Rev. Lett. 101, 106802 (2008).

52C. Panse, D. Kriegner, and F. Bechstedt, Phys. Rev. B 84, 075217
(2011).

53A. Qteish, V. Heine, and R. J. Needs, Phys. Rev. B 45, 6534 (1992).
54I. Vurgaftman and J. R. Meyer, J. Appl. Phys. 94, 3675 (2003).
55Y.-H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamnis, D. A.

B. Miller, and J. S. Harris, Nature (London) 437, 1334 (2005).

125108-9

http://dx.doi.org/10.1038/nnano.2008.359
http://dx.doi.org/10.1063/1.3478004
http://dx.doi.org/10.1063/1.3275793
http://dx.doi.org/10.1103/PhysRevLett.75.2180
http://dx.doi.org/10.1021/ct8004968
http://dx.doi.org/10.1021/ct8004968
http://dx.doi.org/10.1063/1.3524234
http://dx.doi.org/10.1063/1.3524234
http://dx.doi.org/10.1016/0927-0256(96)00008-0
http://dx.doi.org/10.1103/PhysRevB.59.1758
http://dx.doi.org/10.1103/PhysRevB.13.5188
http://dx.doi.org/10.1103/PhysRev.139.A796
http://dx.doi.org/10.1103/PhysRevB.34.5390
http://dx.doi.org/10.1063/1.2204597
http://dx.doi.org/10.1063/1.2204597
http://dx.doi.org/10.1063/1.2404663
http://dx.doi.org/10.1063/1.2187006
http://dx.doi.org/10.1063/1.2403866
http://dx.doi.org/10.1002/pssb.200945074
http://dx.doi.org/10.1002/pssb.200945074
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1103/PhysRevB.76.115109
http://dx.doi.org/10.1103/PhysRevB.78.125116
http://dx.doi.org/10.1103/PhysRevB.78.125116
http://dx.doi.org/10.1103/PhysRevB.5.844
http://dx.doi.org/10.1103/PhysRevA.3.1224
http://dx.doi.org/10.1063/1.3059569
http://dx.doi.org/10.1116/1.568995
http://dx.doi.org/10.1103/PhysRevB.30.4874
http://dx.doi.org/10.1063/1.3464562
http://dx.doi.org/10.1063/1.3464562
http://dx.doi.org/10.1103/PhysRevLett.36.56
http://dx.doi.org/10.1103/PhysRevLett.36.56
http://dx.doi.org/10.1143/JJAP.44.7892
http://dx.doi.org/10.1143/JJAP.44.7892
http://dx.doi.org/10.1063/1.2716994
http://dx.doi.org/10.1063/1.2716994
http://dx.doi.org/10.1103/PhysRevB.49.4710
http://dx.doi.org/10.1103/PhysRevB.50.2715
http://dx.doi.org/10.1103/PhysRevB.50.2715
http://dx.doi.org/10.1103/PhysRevLett.93.216401
http://dx.doi.org/10.1557/PROC-482-917
http://dx.doi.org/10.1557/PROC-482-917
http://dx.doi.org/10.1103/PhysRevB.56.3564
http://dx.doi.org/10.1103/PhysRevB.56.3564
http://dx.doi.org/10.1103/PhysRevB.83.195301
http://dx.doi.org/10.1063/1.3548872
http://dx.doi.org/10.1063/1.3548872
http://dx.doi.org/10.1103/PhysRevLett.101.106802
http://dx.doi.org/10.1103/PhysRevLett.101.106802
http://dx.doi.org/10.1103/PhysRevB.84.075217
http://dx.doi.org/10.1103/PhysRevB.84.075217
http://dx.doi.org/10.1103/PhysRevB.45.6534
http://dx.doi.org/10.1063/1.1600519
http://dx.doi.org/10.1038/nature04204

