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Excitonic effects in optical spectra and electron-hole pair excitations are described by solutions of the
Bethe-Salpeter equation �BSE� that accounts for the Coulomb interaction of excited electron-hole pairs. Al-
though for the computation of excitonic optical spectra in an extended frequency range efficient methods are
available, the determination and analysis of individual exciton states still requires the diagonalization of the

electron-hole Hamiltonian Ĥ. We present a numerically efficient approach for the calculation of exciton states
with quadratically scaling complexity, which significantly diminishes the computational costs compared to the
commonly used cubically scaling direct-diagonalization schemes. The accuracy and performance of this ap-
proach is demonstrated by solving the BSE numerically for the Wannier-Mott two-band model in k space and
the semiconductors MgO and InN. For the convergence with respect to the k-point sampling, a general trend
is identified, which can be used to extrapolate converged results for the binding energies of the lowest bound
states.
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I. INTRODUCTION

The Coulomb interaction of excited electrons and holes
plays an important role for the optical properties of con-
densed matter.1–3 Photon-induced two-particle electronic ex-
citations are accompanied by the rearrangement of the re-
maining electrons in a solid, so that the individual particles
are renormalized to quasiparticles �QPs�. Their description
within the framework of many-body perturbation theory
�MBPT� has made substantial progress in the last three
decades.4 The most common approach is Hedin’s GW
approximation,5 which describes the response of the remain-
ing electrons by a dynamically screened Coulomb potential
W. The self-energy operator � of an excited particle is
thereby given by �= i�GW with the single-particle Green’s
function G. Its numerical implementation6,7 usually yields
single-particle excitation energies in good agreement with
angle-resolved or inverse photoemission experiments.8–10

However, the optically excited quasielectron-quasihole pairs
show additional interactions. They are described by the so-
called polarization function P, which obeys a Bethe-Salpeter
equation �BSE�.1,2 Apart from the bare electron-hole ex-
change, which can be identified with crystal local-field ef-
fects �LFEs�,2 its kernel is given by the derivative
−�i��−1�� /�G, which is usually replaced by the leading term
−W. It clearly represents the screened Coulomb attraction
between quasielectrons and quasiholes.3

Optical spectra of real materials can be calculated from
first principles by solving the eigenvalue problem �EVP� for

an effective two-particle Hamiltonian Ĥ corresponding to a

reformulated BSE. The eigensystem of Ĥ then can be used to
obtain a spectral representation of P. Usually, one of the
following numerical approaches is applied to calculate P or
the directly related frequency-dependent dielectric function

����: �i� The explicit diagonalization of Ĥ �solving the EVP
directly11,12�, �ii� the iterative Haydock method,13 or �iii� a
time-evolution algorithm that is based on an initial-value for-
mulation of the Fourier-transformed dielectric function.14

Meanwhile, the applications extend also to rather complex
materials and structures such as semiconductor surfaces,15,16

nanocrystals and molecules,17,18 or even ice and water.19,20

The most important changes in the optical spectra with re-
spect to the independent-particle limit concern a general red-
shift of the transition energies and a redistribution of oscil-
lator strength toward lower energies.14

For some systems bound states of the electron-hole
pairs—so-called excitons21—also form and can be observed
in optical spectra below the QP absorption edge. Thereby,
two fundamentally different types of excitons—the Frenkel
and the Wannier-Mott type—are distinguished. Excitons of
the Frenkel type emerge in systems where the gap is confined
by rather localized electronic states, as it is found for sur-
faces of covalently bonded semiconductors,15 insulators with
strong ionic bonds,12,13,18,22 or crystals with hydrogen-bridge
bonds.23 For materials with a pronounced dispersion of the
first conduction band, excitons of the Wannier-Mott
type21,24–26 can form below the gap. They give rise to a hy-
drogenlike spectrum of pair eigenvalues and, in contrast to
the Frenkel type, an electron-hole distance much larger than
the lattice constant. Typically, their binding energies are
much smaller than those of Frenkel-like excitons. Neverthe-
less, the lowest excitonic states can be probed by a variety of
spectroscopic techniques.

However, first-principles calculations, as outlined above,
remain a challenging task especially for Wannier-Mott-like
excitons with binding energies below 0.1 eV. The most im-
portant limitation is due to the high k-point densities re-
quired for sampling the Brillouin zone �BZ� in order to de-
scribe the localization of the excitonic wave function in the
Fourier space sufficiently. The number of k points directly
relates to the rank N of the BSE Hamiltonian, causing ex-
treme demands in terms of storage and CPU time for the
calculation of the spectra. The latter one rapidly becomes the
limiting factor, since, of the previously discussed ap-

proaches, only the direct diagonalization of Ĥ—involving
computational costs scaling like O�N3�—can be employed in
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the computation of bound pair excitations. Attempts have
been made to solve the problem by introducing an interpola-
tion scheme for the electron-hole interaction27 or by k-point
samplings restricted to only a small part of the BZ.28,29 Still,
the question how the complete electronic structure influences
the bound pair excitations and their oscillator strengths re-
mains open. Also the effects of electron-hole exchange on
the excitons30,31 have been studied little so far by a combi-
nation of ab initio electronic-structure calculations and the
BSE treatment of the two-particle excitations. Another im-
portant point concerns the prediction of excitonic effects,
e.g., binding energies and oscillator strengths, for semicon-
ductors such as InN, whose sample quality does currently not
allow their measurement. Also the influence of polytypism of
a material remains an open question.

In order to reduce the computational demands necessary
for systematic studies addressing the aforementioned ques-
tions, we combine the use of special k-point sets and an
iterative matrix-diagonalization scheme, obtaining a compu-
tationally very efficient approach for the calculation of exci-
tonic states below the absorption edge. The methodology of
this approach is described in detail in Sec. II. The computa-
tional details of the underlying ab initio calculations are
summarized in Sec. III. In Sec. IV A the approach is applied
to and tested by means of the Wannier-Mott model exciton.
The consequences of “true” ab initio band structures are
studied for the semiconductors MgO and InN in Secs. IV B
and IV C. Finally, a summary and conclusions are given in
Sec. V.

II. METHODOLOGY

A. Bethe-Salpeter equation and pair Hamiltonian

The inclusion of excitonic effects in optical spectra re-
quires going beyond the independent-quasiparticle approxi-
mation �IQA� for the polarization function P by taking into
account the electron-hole attraction and exchange. For this
purpose a BSE for the irreducible polarization can be derived
from MBPT,1,4

P = P0 + P0�2v̄ − W�P , �1�

with the IQA polarization function P0, the statically screened
Coulomb potential W, and the bare Coulomb potential v̄
without its long-range Fourier component G=0. For a de-
tailed derivation and a generalization for collinear spin po-
larization, we like to refer to Ref. 32.

A commonly adopted basis for representing the BSE is
given by the Bloch states �nk�r� of the crystal problem, char-
acterized by the band index n and a wave vector of the first
BZ k. Neglecting QP effects for the wave functions, they are
usually approximated by the wave functions obtained in the
framework of density functional theory �DFT� from the so-
lution of the Kohn-Sham equation,

�−
�2

2m
� + V�r� + VH�r� + VXC�r���nk�r� = �n�k��nk�r� ,

�2�

with the Kohn-Sham eigenvalues �n�k� and the potentials of
electron-ion �V�, Hartree �VH�, and exchange and correlation

�XC, VXC� interaction. The latter potential is usually given by
the local density approximation �LDA� or generalized gradi-
ent approximation �GGA�. However, for materials where
these approximations fail, such as InN, other potentials de-
rived, e.g., from the LDA+U scheme33 or even spatially
nonlocal potentials in the framework of generalized Kohn-
Sham schemes34 might be used. Especially the latter consti-
tute a good starting point for the perturbative calculation of
single-particle QP eigenvalues En

QP�k�.35

With restriction to materials with completely occupied
and unoccupied bands �semiconductors and insulators�, the
BSE �Eq. �1�� can be rewritten as EVP for an effective two-

particle Hamiltonian Ĥ,11

�

�2	�3 �
c�v�

�
�BZ

dk�Ĥc�v�
cv �k,k��Ac�v�


 �k�� = E
Acv

 �k� , �3�

with the pair eigenvalues E
 and eigenvectors Acv

 �k�, � the

crystal volume, and �BZ the volume of the BZ. The two-
particle Hamiltonian can be divided into a diagonal and a
nondiagonal part,

Ĥc�v�
cv �k,k�� = Hcv

D �k��vv��cc��kk� + Hc�v�
cv �k,k�� , �4�

with

Hcv
D �k� = Ec

QP�k� − Ev
QP�k� , �5a�

Hc�v�
cv �k,k�� = − Wc�v�k�

cvk + 2v̄c�v�k�
cvk , �5b�

where �kk� is used as short notation for �2	�3�−1��k−k��.
The first diagonal contribution to Eq. �4� is constructed from
the difference of the QP eigenvalues of conduction and va-
lence bands. It describes the excitation of noninteracting qua-
siparticles. The second part, given by the matrix elements of
the statically screened Coulomb potential W, accounts for the
attraction of electrons and holes,

Wc�v�k�
cvk =� � drdr��ck

� �r��c�k��r�W�r,r���vk�r���v�k�
� �r��

=
1

�
�
GG�

4	e2�GG�
−1 �k − k��

	k − k� + G		k − k� + G�	
Bc�k�

ck �G�Bv�k�
vk� �G�� ,

�6�

with the symmetrized inverse dielectric function �GG�
−1 and

the Bloch integrals

Bn�k�
nk �G� =

1

�0
�

�0

drunk
� �r�eiGrun�k��r� . �7�

Thereby, G denotes vectors of the reciprocal lattice, �0 the
unit cell volume, and unk�r� the cell-periodic part of the
Bloch waves �nk�r�= ���−1/2eikrunk�r�. The third part con-
tains matrix elements of the bare Coulomb potential and
models such effects as LFEs by means of an electron-hole
exchange term,3,30
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v̄c�v�k�
cvk =� � drdr��ck

� �r��vk�r�v̄�r − r���c�k��r���v�k�
� �r��

=
1

�
�

G�0

4	e2

	G	2
Bvk

ck�G�Bv�k�
c�k���G� . �8�

B. Generalized eigenvalue problem

For any practical purpose the k-continuous formulation of
the BSE �Eq. �3�� needs to be discretized,27 and the sum over
the valence and conduction bands has to be truncated. In this
work, the latter truncation is achieved by introducing a cutoff
energy for the transition energies of noninteracting pairs. For
practical reasons we define this BSE cutoff Ecut with respect
to the single-particle energies without QP corrections, corre-
sponding to the Kohn-Sham eigenvalues, �c�k�−�v�k�
�Ecut. For the k discretization the BZ is divided into sub-
volumes Vk with �BZ=�kVk. The k-discrete BSE Hamil-
tonian and eigenvectors are defined as averages over the sub-
volumes Vk,

Acvk



ª

1

Vk
�

Vk

dqAcv

 �q�, Hcvk

D
ª

1

Vk
�

Vk

dqHcv
D �q� ,

�9�

Hc�v�k�
cvk

ª

1

VkVk�
�

Vk

dq�
Vk�

dq�Hc�v�
cv �q,q�� . �10�

With these definitions the discretization of Eq. �3� yields the
generalized EVP

�

�2	�3 �
c�v�k�

Hc�v�k�
cvk Vk�Ac�v�k�


 = �E
 − Hcvk
D �Acvk


 . �11�

Fortunately, it is easy to recast Eq. �11� into a conventional

EVP for H̃c�v�k�
cvk =�kHc�v�k�

cvk �k�,

�
c�v�k�

H̃c�v�k�
cvk Ãc�v�k�


 = �E
 − Hcvk
D �Ãcvk


 , �12�

using the transformed eigenvectors Ãcvk

 =�kAcvk


 with �k
=
Vk� / �2	�3.

Special care has to be taken for the singular G=G�=0
part �SC� of W appearing in the k=k� term of Hc�v�k�

cvk ,

SC�Hc�v�k�
cvk � = −

4	e2�00
−1�0�

�VkVk
�

Vk

dq�
Vk

dq�
�vv��cc�

	q − q�	2
.

�13�

It can be evaluated analytically when the six-dimensional
integration is approximately replaced by the three-
dimensional integral �Sk

dq / 	q	2 over spheres Sk of the vol-
ume represented by each k point. The singularity correction
decreases with increasing number of k points, converging to
zero in the limit of vanishing k−k� distance. In the case of
regular k-point meshes, the singularity correction leads to a
rigid shift of the eigenvalues to lower energies.36 For inho-

mogeneously distributed k-point sets, however, its value is
not constant over all k points. Therefore, we do not adopt the
spherical approximation in order to avoid spurious effects on
the absolute values and relative positions of the eigenvalues.
Instead, we carry out the six-dimensional integral of Eq. �13�
numerically, taking into account the actual size and shape of
Vk. Since the numerical convergence of these integrals is
utterly slow but perfectly linear when plotted over the
sampling-point distance along one direction, we extrapolate
the value of the singularity correction from the results of two
calculations using 106 and 206 sampling points inside Vk.
Still, the integration of Eq. �13� is rather time consuming and
therefore only sensible in case of a limited number of differ-
ent sizes and shapes of Vk, e.g., in the case of regular or
hybrid k meshes as introduced in Sec. II E.

C. Optical spectra

The diagonal components of the frequency-dependent
macroscopic dielectric tensor �mac

j j ��� can be obtained using

the eigenvectors Ãcvk

 and energies E
 from the solution of

Eq. �12�,

�mac
j j ��� = 1 +

4	

�

e2�2

m0
�



f j



E
 �

=�1

1

E
 − 
��� + i��
,

�14�

where the oscillator strengths f j

 are given by

f j

 =

2

m0
��

cvk


�ck	pj	�vk�
�c�k� − �v�k�

�kÃcvk

� �2

E
 �15�

and 
�ck	pj	�vk� denote the matrix elements of the momen-
tum operator in the Cartesian direction j.

For the calculation of the dielectric function �DF�,
Schmidt et al.14 devised an efficient approach—scaling like
O�N2� with the dimension N of the excitonic Hamiltonian.

This approach avoids the direct diagonalization of Ĥ by re-
formulating Eq. �14� as an initial-value problem and solving
that. It, however, comes at the price of losing the explicit
knowledge of the exciton excitation energies E
 and wave-
function coefficients Acvk


 . Further, a certain broadening � of
the optical transitions is mandatory for the numerical conver-
gence of the algorithm. For large and complex systems,
where N can reach up to 105 or more, the computational

costs for a full diagonalization of Ĥ become prohibitive due
to their O�N3� scaling. This renders the time evolution the
only feasible approach for the calculation of the DF. Another
method, also aiming only at the DF, was proposed by Bene-
dict et al.13 It is, however, hard to compare in terms of com-
putational efficiency due to its implementation in real space.

D. An O(N2) algorithm for excitons

Often, not the DF itself but isolated exciton levels, espe-
cially bound states with pair excitation energies E
 below the
lowest QP gap, are of interest. Due to the limited spectral
resolution and the possibility of vanishing oscillator strength,
such excitations cannot be studied with the time-evolution
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method. The same holds for the analysis of excitonic wave
functions, which requires the knowledge of the respective
eigenvalues and eigenvectors. In those cases Eq. �3� needs to
be solved directly, raising again the problem of excessive
computational costs for complex systems. For Wannier-Mott-
like excitonic states near the absorption edge, usually a fairly
small BSE cutoff can be used in order to reduce the dimen-

sion of Ĥ.37 On the other hand, a large number of k points is
required in the computations to ensure a sufficiently large
crystal volume to accommodate the exciton, which can ex-
tend over several thousand unit cells according to exciton
localization radii in the range of 10–100 Å.

For excitons, numerical convergence is typically obtained

for dimensions of Ĥ somewhere in the range of N
=104–105. Direct matrix diagonalization schemes can be
used at the lower end of the aforementioned range with com-
putational times of a few CPU hours. However, due to the
rapid O�N3� increase in computational costs, problems of
mid-range size are already computationally too expensive for
systematic studies.

Given the combination of a large-rank Hamiltonian and
the interest in only a few of the smallest eigenvalues and
corresponding eigenvectors renders the problem strongly
reminiscent of the Kohn-Sham problem in DFT. Of course,
this refers only to the dimensions of the problems because in
fact the BSE-EVP is less complicated since no self-
consistent update of the Hamiltonian is required. Using this
observation, we propose to employ iterative minimization
techniques similar to those used in DFT for the study of
distinct exciton levels. These are based on the minimization
of the Ritz functional,

Ẽ��̃
� =

�̃
	Ĥ	�̃
�


�̃
	�̃
�
, �16�

with the trial vector 	�̃
�. Obviously, an unconstrained mini-
mization yields

min
�̃


Ẽ��̃
� = E
=1 = E�A
=1� , �17�

the lowest �first� eigenvalue and the corresponding eigenvec-

tor of Ĥ. For any higher eigenvalue 
�1 the minimization
needs to be constrained to the orthogonal complement of
span�A1 , . . . ,A
−1�. For the actual calculation we follow the
scheme devised by Kalkreuter and Simma.38 There, consecu-
tive conjugate gradient �CG� steps are performed together

with intermediate diagonalizations of Ĥ in the low-
dimensional subspace span��̃1 , . . . , �̃ns�, the so-called sub-
space rotations �SRs�. The dimension ns of the subspace,
thereby, roughly corresponds to the number of desired eigen-
values �typically ns�20�. We have chosen a CG-based algo-
rithm for the sake of simplicity and due to its robustness.
Other algorithms, however, can be used as well and might
also improve performance.

As already stressed above, in practice only a limited num-
ber of excitonic levels are of interest for the study of exci-
tons. Further, this number does not usually depend on N, the

dimension of Ĥ. Therefore, under the assumption that the
number of total CG steps is independent of N, the theoretical
operation count scaling of the CG+SR algorithm is found to
be O�N2�. The reason is that it involves only matrix-vector
and vector-vector operations of dimension N and diagonal-
izations of fixed-size ns�ns matrices. In general, the as-
sumption of a constant number of total CG steps, is of
course, not true since it is determined by the convergence of
the algorithm. However, it is found that the convergence de-
pends little on the matrix dimension but more on its condi-
tioning. Figure 1 confirms that the CG+SR method scales
basically like O�N2�. The crossover point is found below N
=1000 when competing with full diagonalization, or at 3000
when comparing against the LAPACK �Ref. 39� CHEEVX rou-
tine for calculating selected eigenvalues and vectors of ran-
domly filled Hermitian matrices.

Moreover, the CG+SR algorithm can be easily parallel-
ized. MPI parallelization can help to meet the high memory
demands for solving the BSE by utilizing distributed
memory. However, also very reasonable speedups are ob-
tained by using multiple processors.

E. Hybrid k-point meshes

Even though the algorithm suggested in the preceding
section keeps the computational costs for the calculation of
excitons tractable, one drawback of the EVP remains—its
extreme memory demands. Using very dense k-point
meshes, the BSE Hamiltonian matrices of Eq. �4� easily ex-
ceed 50-GB storage. Since the storage requirements scale
quadratically with the number of k points, also the use of
refined regular k-point meshes rapidly approaches the limits
of today’s supercomputers.

In order to reduce the memory demands, also the com-

puter time for setting up Ĥ, one may benefit from noting that
the wave functions of Wannier-Mott-like excitons are well
localized in k space �cf. Figure 2�. Therefore, it is reasonable
to refine the k meshes only in the center of the BZ.12,28 Such
a refinement, however, comes at the price of having to intro-

1000 10000
Matrix dimension N

0.01

0.1

1

10

C
P

U
tim

e
(h

)

CHEEV
CHEEVX
CG+SR

FIG. 1. �Color online� CPU time on a single Opteron 275 core
needed for the full diagonalization �CHEEV, black filled circles� or
the computation of the 15 lowest eigenvalues of randomly filled
Hermitian matrices, using the LAPACK library routine CHEEVX �black
unfilled circles� or the CG+SR algorithm �green squares�. The solid
lines represent cubic �black� and quadratic fits �green� to the differ-
ent data sets.
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duce varying weights �see Eqs. �9�–�11��, turning Eq. �3� into
the generalized EVP Eq. �12�.

The hybrid k-point meshes used in this work are con-
structed in the following manner �see also Fig. 2�. First, the
whole BZ is sampled using a comparably coarse mesh of
Monkhorst-Pack k points.40 Second, an inner region, fenced
in by k points of the coarse mesh, is defined and the points
inside this region including those on the borders are re-
moved. In a third step, this inner region is filled with a fine-
grained regular k mesh, which must be constructed accord-
ingly to include k points on the borders of the inner region.
Finally, the latter k points are centered inside their associated
k-space volume. In some cases it is meaningful to further
refine the k-point mesh in the inner region. This can be
achieved by repeating steps two and three with respect to the
inner mesh. Hereafter, meshes constructed accordingly by
double repetition of the latter steps are referred to as double-
hybrid ones.

The following notation is used to characterize the afore-
described hybrid meshes �see also Fig. 2 and its caption�.
The first set of numbers indicates the k points in the outer
�coarsely sampled� part of the BZ along the directions of the
reciprocal basis. The second set indicates the size of the cen-
tral part of the BZ �with refined sampling� with respect to the
k-point distance of the outer mesh, and the third set of num-
bers provides a measure for the sampling density inside the
central part of the BZ. For better comparison the latter set
corresponds to the number of regular k points in each direc-
tion necessary for sampling the whole BZ at the density
achieved by the refined sampling. Double-hybrid meshes are
characterized additionally by the size and sampling informa-
tion of the second refinement region, encoded in the same
manner as for the single hybrid meshes described earlier. To
shorten the notation in case of isotropic sampling, only one
number is given per set �see also the caption of Fig. 2�.

One should note that the use of a hybrid mesh requires the
knowledge of the dielectric screening �GG�

−1 �q� at all vectors
q=k−k� for the calculation of Wc�v�k�

cvk in Eq. �6�. This also

involves q points that are not part of the hybrid k-point
mesh, which is no concern in case of a constant or model
screening as used throughout this work. However, if the
screening is calculated in random-phase approximation
�RPA�, this constitutes an additional complication, which
might be overcome by interpolating the screening for q
points not included in the hybrid mesh.

III. COMPUTATIONAL DETAILS

The results presented for MgO and InN in Secs. IV B and
IV C are based on the results of ab initio DFT calculations,
carried out using the Vienna Ab initio Simulation Package
�VASP �Refs. 41 and 42��. The projector-augmented wave
�PAW� method43,44 is used to model the electron-ion interac-
tion. Plane waves up to a kinetic energy of 400 eV are in-
cluded in the basis set of the electronic wave functions. Qua-
siparticle band structures are calculated for InN and MgO as
a gauge by means of the HSE03+G0W0 approach with com-
putational details as described in detail in Refs. 35 and 42.
Within the explicit calculations the single-particle eigenval-
ues and wave functions are computed using exchange and
correlation potentials according to the semiempirical
LDA+U �InN� or the GGA �MgO� scheme, together with a
scissors operator to correct for the gap underestimation. The
BSE Hamiltonian is set up according to Eq. �4�, whereby, the
inverse dielectric function entering the screened interaction
term Wc�v�k�

cvk is approximated by a G-diagonal model
function.45 The latter parametrically depends on the static
electronic dielectric constant, which is taken from RPA cal-
culations or experiment.

IV. RESULTS

In the following we present results obtained within the
afore-introduced CG+SR approach for three applications.
First, we numerically study the two-band Wannier-Mott ex-
citon in k space to demonstrate the applicability of the
CG+SR approach and to extract some general trends. Fur-
ther, the formation of excitons is studied for the large-gap
material MgO and the narrow-gap semiconductor InN. Due
to their band structures, the excitons occurring in both mate-
rials are expected to show Wannier-Mott-like character.

A. The Wannier-Mott model

Probably the most simplified model of a semiconductor
band structure is the two-band model of two opposed para-
bolic bands, separated by the fundamental gap Eg. Within
this model many fundamental properties can be calculated
analytically, including the formation of a series of excitons
below the absorption edge as found by Wannier46 and Mott.47

The analytic solution in three dimensions25 uses the fact that
the BSE Hamiltonian Eq. �4� for the two-band model,

Hc�v�k�
cvk = �cc��vv���Eg +

�2	k	2

2�
��kk� −

4	e2

��0	k − k�	2� ,

�18�

resembles that of a hydrogen-like atom with the known so-
lution of a Rydberg series for the discrete part of the spec-
trum,
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FIG. 2. �Color online� The left panel illustrates the construction
scheme for the hybrid k-point meshes for a two-dimensional BZ.
The k points of the coarse mesh are indicated by unfilled circles and
those of the refined mesh by red dots. Further, the boundaries of the
BZ and its inner part are indicated. Following the notation intro-
duced in the text, the mesh shown here would be referred to as
hybrid 8:3:21.33. The right panel shows the localization of the wave
function for an 1s Wannier-Mott exciton �with the parameters as in
Sec. IV A� in reciprocal space.
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Enlm = Eg − Rex/n2, �19�

where the quantum numbers n, l, and m of the hydrogen
atom now label the excitonic states. Henceforth,
Rex=R�� / �m0�0

2� denotes the excitonic Rydberg constant
and �0 determines the effective static and spatially constant
screening of the Coulomb potential. The reduced mass
�= �mc

�−1+mv
�−1�−1 follows from the effective masses of the

valence and conduction band.
For the numerical solution the effective masses are chosen

to be 1.0 m0 and 0.5 m0, such that �=1 /3 m0. For the band
gap a value of 3.0 eV is assumed. The calculations are per-
formed in a simple cubic k-space volume extending over
2	 /3 Å−1, which naturally limits the maximum BSE cutoff
to roughly 15.5 eV. Therefore, in the following only BSE-
cutoff energies of 15 eV or below are considered. Using a
screening constant of �0=4, the excitonic Rydberg—
corresponding to the highest possible exciton binding
energy—amounts to Rex=283.45 meV.

In order to treat Eq. �18� numerically in k space, it is
necessary to introduce a k-point sampling. Using
Monkhorst-Pack meshes of regular k points, we first study
the cutoff dependence of the binding energy of the
1s �n=1, l=0� exciton. Figure 3 shows the results for two
different regular meshes consisting of 40�40�40 and
80�80�80 points. According to Fig. 3 the 1s binding en-
ergy increases with an increasing number of states included

in Ĥ and a direct proportionality between the binding energy
and �Ecut−Eg�−1 exists. While the latter relation cannot be
expected to transfer to the situation of real semiconductors
with a multitude of contributing bands, it is useful for esti-
mating the effect of a limited BSE cutoff for the two-band
model. Based upon linear extrapolation of the data between
Ecut=8–15 eV �cf. Figure 3�, the 1s binding energy at 15 eV
cutoff is expected to underestimate the Ecut→� value by less

than 5 meV, i.e., by less than 2%. The energy difference
between the two k-point sets is much larger, demanding for a
better k-point sampling.

Unfortunately, the 80�80�80 k-point Hamiltonian ma-
trix at a cutoff of 10 eV already requires 95 GB RAM in
single precision storage and would require 480 GB at
Ecut=15 eV, due to the relation Ecut�N2/3, specific for the
two-band model. Therefore, the hybrid k-point meshes intro-
duced in Sec. II E are adopted in the following. The k-point
density in the central part of the BZ corresponds to
80�80�80 k points in the full zone for all of them, thus
allowing for a direct comparison to the results of the regular
mesh with 803 points. According to Fig. 3, it is possible to
increase the distance of adjacent k points by a factor of two
in the outer zone without introducing any significant error if
the inner zone extends to half of the BZ along each direction.
Further, it should be noted that this 40: 21: 80 mesh contains
only about a fourth of the k points included in the regular 803

mesh and thereby reduces the memory demands by a factor
of 16. If the size of the densely sampled inner zone is re-
duced further, the binding energy increases. This is somehow
unfortunate because it counteracts the BSE-cutoff conver-
gence. An analog trend is found when the sampling in the
outer region is reduced while the size and sampling density
of the inner zone are kept fixed. Moreover, Fig. 3 shows that
a trade-off between the minimum size of the inner zone and
the sampling density of the outer zone exists if one allows
for a fixed error with respect to the corresponding regular
mesh.

Figure 4 shows the results for the 1s binding energy using
k meshes with a fixed sampling density in the outer zone and
a varying inner density and size of the inner zone. Obviously,
the binding energy is directly proportional to the distance of
adjacent k points, allowing for a linear extrapolation similar
to the situation found for the convergence with the BSE cut-

0.00 0.05 0.10 0.15 0.20 0.25 0.30
(Ecut-Eg)

-1
(eV

-1
)

-45

-40

-35

-30

-25

-20

-15

-10

-5

0
B

in
di

ng
en

er
gy

di
ffe

re
nc

e
(m

eV
) 20 : 5 : 80

20 : 7 : 80
40 : 7 : 80
40 : 11 : 80
40 : 21 : 80
regular 40
regular 80

FIG. 3. �Color online� Convergence of the binding energy of the
1s exciton with the cutoff energy Ecut. The results for two regular
�squares� and five hybrid k-point meshes �circles and crosses� are
shown. The hybrid meshes feature a common k density in the inner
part, equivalent to that of the regular 803 k-point mesh. The y axis
refers to the difference of the numerically calculated binding energy
and the analytical result of 283.45 meV. Solid lines indicate the
results of linear fits inside the region 0.08–0.2 eV−1. Dashed lines
correspond to extrapolations based on these fits.
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off. We would like to point out that the observed trend is not
dominated by the singularity correction �cf. Eq. �13�� even
though the latter obeys the same proportionality. This can be
seen from Fig. 4, which also includes plots of the singularity
correction for the three-dimensional spherical
approximation36 and the six-dimensional integration of Eq.
�13� as utilized in the present calculations. Taking into ac-
count that the binding energy and not the eigenvalue itself is
plotted, it can be seen from Fig. 4 that the singularity correc-
tion already partially anticipates the k-point convergence.

Figure 5 shows the k-point convergence of the first, sec-
ond, and third shell excitons for two sizes of the inner zone.
In the realm of the two-band model all eigenvalues of a fixed
principal quantum number n are expected to be degenerate.
Indeed, this degeneracy is found in the better-converged nu-
merical results with a remaining error of about 0.1 meV or
less. It is obvious from Fig. 5, that the rate of convergence
might differ from one shell to another, but also within a shell
of equal n, at least in the lower sampling regime. Also the
linear behavior can be spoiled there. This is readily under-
stood, taking into account that the respective wave functions
differ in their real-space localization. Therefore, since the
exciton localization volume increases with the principal
quantum number n, convergence with respect to the k-point
sampling is achieved harder for higher excitonic states. The
same holds for excitons of lower quantum number l when
comparing them to others of the same shell n. Since these
states become more localized in the reciprocal space, it is in
principle possible to use hybrid meshes with an even smaller
inner zone for computing the latter. This also becomes ap-
parent from Fig. 5 comparing the different k meshes.

The oscillator strengths of the n=1–3 excitons are shown
in Fig. 6. From the analytic description only excitons with s
character are expected to have nonvanishing oscillator
strengths, which decay with increasing principal quantum
number like n−3. Indeed the numerical results follow these

expectations with only small deviations. Further, the l�0
excitons are found to have vanishing oscillator strengths.
This is in good agreement with the analytical result, predict-
ing a direct proportionality between f j


 and the excitonic
wave function at vanishing electron-hole distance in the case
of k-independent dipole-matrix elements �cf. Eq. �15��. Since
hydrogenic wave functions are nonvanishing at r=0 only for
l=0, the l�0 excitons are dipole forbidden. Indeed, similar
observations have been made for aluminium nitride �AlN�,48

which, due to its large negative crystal-field splitting, can be
viewed as a natural realization of the previously discussed
two-band model—albeit with a pronounced anisotropy of the
effective masses.

B. MgO

Magnesium oxide �MgO� is a wide gap semiconductor
with a gap of approximately 7.8 eV.49 Up to very high pres-
sures its equilibrium crystal structure is given by the rock
salt �rs� phase.50 In DFT-GGA the gap is strongly underesti-
mated with a value of only 4.5 eV. Using first-order pertur-
bation theory �G0W0� based on the DFT eigenvalues, the gap
cannot be fully corrected, resulting in a GGA+G0W0 QP
value of 6.8 eV. This deficiency can be mostly overcome
starting from the nonlocal HSE03 XC functional. Together
with perturbative QP corrections, this approach results in a
reliable electronic structure with a slightly underestimated
gap of 7.5 eV. Other, even more sophisticated QP calcula-
tions, taking into account self-consistency51,52 or even vertex
corrections52 in the self-energy, are found to overestimate the
gap slightly by approximately the same amount. All of these
schemes, however, share the drawback of being computa-
tionally by far too expensive to act as foundation for a study
of bound excitons. Therefore, we use the GGA electronic
structure as basis for the following studies, simply correcting
the gap by a scissors shift of 2.98 eV. Figure 7 demonstrates
that this approximation compares reasonably to the results of
the more sophisticated HSE03+G0W0 approach. Especially

-40
-30
-20
-10

0

-40
-30
-20
-10

0

B
in

di
ng

en
er

gy
di

ffe
re

nc
e

(m
eV

)

l=2

0 0.01 0.02 0.03 0.04 0.05 0.06
Minimum k-point distance (Å

-1
)

-40
-30
-20
-10

0

n=3

n=2

n=1

l=0 l=1

FIG. 5. �Color online� Convergence of the first, second, and
third shell �n=1–3� excitons with the k-point sampling for two
different sizes �40:11—black lines with filled symbols and
40:7—red lines with unfilled symbols� of the densely sampled inner
zone and a fixed sampling density in the outer region of the BZ.
Different angular momentum quantum numbers l are encoded by
different symbols. Circles correspond to excitons with s, squares to
p, and triangles to d character. The binding energy is given with
respect to the analytical result of 283.45 /n2 meV with n=1–3.

050100150200250300
Binding energy (meV)

0.0

0.2

0.4

0.6

0.8

1.0

O
sc
ill
a
to
r
st
re
n
g
th
(a
rb
.u
n
its
)

n=1 n=2 n=3

40 : 7 : 309
40 : 9 : 240

FIG. 6. �Color online� Oscillator strengths of the n=1–3 exci-
tons. Vertical and horizontal dashed lines indicate the analytical
results for the exciton binding energies and oscillator strengths.
Only excitons of angular momentum quantum number l=0 are
found to be bright. All other excitons with l�0 are dipole forbidden
as indicated by vanishing oscillator strengths.

EFFICIENT O�N2� APPROACH TO SOLVE… PHYSICAL REVIEW B 78, 085103 �2008�

085103-7



the band dispersion is found to compare well between both
approaches.

Due to the rock salt symmetry of the crystal lattice, MgO
has an s-like conduction-band minimum �CBM� of �1,c-type
and a threefold-degenerate p-like valence-band maximum
�VBM� of �5,v-type. Two of the three uppermost valence
bands show almost the same dispersion in the region around
the � point, while the third one is more dispersive. In this
situation the formation of three degenerate, s-symmetric ex-
citons is expected from k ·p theory.53 In the following we
will label these excitons by A, B, and C. Indeed, for well-
converged k-point samplings, A, B, and C are found to be
almost degenerate in our numerical calculations. The remain-
ing splitting between �A, B� and C amounts to 0.30 meV,
corresponding to less than 0.1% of the total binding energy,
and might be due to numerical errors. In full agreement with
the initial expectations, all three excitons are visible in any
polarization direction. For the screening in our calculations
we use an electronic dielectric constant of ��=3.0, which is
in between the experimental value of 2.94 �Ref. 54� and the
value of 3.16 obtained in RPA.50 The influence of �� will be
discussed below.

In the inset of Fig. 8 the convergence with respect to the
BSE-cutoff energy is shown for the lowest three excitons.
Clearly, the variation is not strictly linear as in the case of the
two-band model. However, at BSE-cutoff energies higher
than 13 eV, corresponding to �Ecut−Eg�−1=0.117 eV−1, the
variation flattens out. Therefore, upon the data of Fig. 8, one
can estimate that the exciton binding energies computed at a
BSE-cutoff energy of 13.0 eV, as used in the following, are
accurate within about 10 meV, i.e., less than 2.4% of the
binding energy.

The convergence with the number of k points for MgO is
studied in Fig. 8. As found for the two-band model in the
preceding section, we observe a linear variation with respect
to the distance of neighboring k points. From this data an
average binding energy for the A, B, and C excitons of 429
meV is derived by linear extrapolation. In comparison to
experimental results of about 80 meV �Ref. 49� and 145 meV
�Ref. 55�, the calculated binding energies turn out to be dras-
tically overestimated. This may be attributed to the neglect of
dynamical screening,56,57 which can influence the exciton
binding energies significantly.

Since the experimental binding energies are of the order
of the longitudinal optical phonon energies
��LO=89 meV,54 the lattice polarization can partially con-
tribute to the screening of the electron-hole attraction. It is
suggested18,57–59 that the static electronic dielectric constant
�� has to be replaced by an effective dynamical one �0,
which is enlarged by parts of the lattice polarizability
���s−���. For MgO the effect of lattice polarization is very
pronounced, as indicated by the large difference between the
static electronic dielectric constant ��=3.0 and the static di-
electric constant �s=9.8.54 This may lead to a strong reduc-
tion of the binding between electron and hole. An estimate of
the true effect would require an explicit treatment of the
dynamical screening,56,57 which is a computationally ex-
tremely demanding task. Therefore, we only performed test
calculations using an effective screening constant of �0=6.0,
as suggested from fits to the experimental exciton spectra,58

finding reduced exciton binding energies of, in average, 99.8
meV for the A, B, and C exciton.

It may be confusing to note that other theoretical
studies13,60 also predict much lower exciton binding energies
closer to the experimental values, even though they use the
static electronic dielectric constant or a RPA screened poten-
tial as well. We attribute most of the difference to the com-
parably coarse k-point samplings of 256 �Ref. 60� and 1000
�Ref. 13� k points in the full BZ used in these studies to
calculate the dielectric function in an extended energy range.
As demonstrated in Fig. 8 the exciton binding energies of
MgO show a rather strong variation with the k-point sam-
pling density, leading to binding energies of 282 meV �A, B�
and 191 meV �C� at a sampling density of 1000 k points in
the BZ.

An interesting effect of the real behavior of the electron-
hole attraction can be observed for the higher pair excitation
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states. There, the nonspherical deviations of the potential W
from the model 	k−k�	−2 dependence are found to cause a
splitting of the exciton levels 4–15 into five distinct levels.
Three of the latter are threefold degenerate, and one of them
is found to contain the only three excitons with nonvanishing
oscillator strength �cf. Fig. 9�. Figure 9 shows the conver-
gence of these states with respect to the distance of adjacent
k points, whereby the linear variation at small k-point dis-
tances indicates a reasonable convergence.

An open question is the absolute and relative influence of
the LFEs or electron-hole exchange effects proportional to v̄
in the pair Hamiltonian Ĥ �Eq. �4�� on the binding of the
excitons. In order to study this effect, we setup the BSE
Hamiltonian according to Eq. �4� once including both contri-
butions �W and v̄� and with W or v̄ separately. Two k-point
samplings, given by the hybrid meshes 10: 7: 24 and 10: 7:
20, are used to account also for potentially different rates of
convergence between the two contributions W and v̄. As ex-
pected, excitonic bound states cannot form in the absence of
the attractive screened Coulomb interaction W between elec-
tron and hole. If, however, the electron-hole exchange v̄ is
suppressed, the binding energies of the lowest three excitons
increase by about 58 meV. In relation to the exciton binding
energy, the reduction due to the LFEs amounts to about 14%
or even more if dynamical screening is taken into account.
The splitting of A, B, and C is slightly affected. From Table

I it can be inferred that the convergence rates of W and v̄
indeed differ. Actually, the contribution of v̄ is found to be
well converged at the probed k-point sampling densities.

C. InN

Indium nitride �InN� is a narrow-gap semiconductor with
a gap of approximately 0.6–0.7 eV,61–63 crystallizing in the
wurtzite �wz� structure under ambient conditions. Complica-
tions for the theoretical treatment of InN arise from the fact
that DFT calculations including the In 4d electrons as va-
lence states fail to predict a finite gap, no matter whether a
local �LDA� or semilocal �GGA� approximation is used for
the XC functional. Instead, the calculated band structures
correspond to that of a zero-gap semiconductor with, in com-
parison to the experiment, an inverted ordering of the �1,c
and �5,v ,�1,v levels.64 It was shown recently35,65 that these
deficiencies can be overcome using either the method of op-
timized effective potentials65 or a hybrid XC functional such
as HSE03.66 Both methods, however, are computationally
too expensive for a study of excitons.

Therefore, we retreat to the much simpler LDA+U
scheme,33,67,68 trying to obtain a reasonable approximation of
the HSE03+G0W0 band structure in the gap region around
the � point by tuning the intra-atomic Coulomb repulsion of
the In 4d electrons by the U parameter. The band structure
resulting from such an LDA+U calculation is shown in Fig.
10 in comparison to the QP band structure derived within the
HSE03+G0W0 scheme. For clarity only the results fitting
best, obtained for U=3 eV, are shown. Moreover, a scissors
shift of 0.48 eV is used to open the gap additionally toward
the value of 0.71 eV, as predicted by the HSE03+G0W0
calculations. Using the LDA+U approach, the effective
masses at the � point amount to approximately 2.2–2.5 m0
for the uppermost valence bands �vA ,vB� of �5,v type. The
masses of the crystal-field split off �vC ,�1,v� and the first
conduction band are much smaller with values of approxi-
mately 0.03 m0. The respective values obtained from the
HSE03 calculation differ notably, amounting to 0.9 m0 for
the mass of the vA and vB bands and 0.046 m0 for the vC

TABLE I. Effect of the electron-hole exchange on the average
exciton binding energy of the A, B, and C excitons in MgO.

average A, B, C binding energy �meV�
Hamiltonian extrapolated 10: 7: 24 10: 7: 20

Ĥ=−W+2v̄ 429.2 370.5 358.1

Ĥ=−W 479.6 419.9 407.3
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band and electron mass. We will try to assess the influence of
the modified dispersion at the end of this section. The
crystal-field splitting amounts to �cf =11.9 meV in the
present approximation of LDA+U �U=3 eV�, underestimat-
ing slightly the experimental values of 19–24 meV �Ref. 69�
but also the HSE03+G0W0 value of 22.9 meV. We do not
take into account the spin-orbit splitting of the valence
bands, which amounts to 21.3 meV according to HSE03
calculations.70 For the static electronic dielectric constant ��

entering W, a value of 7.9 is used. It corresponds to the
average of the experimental values of the ordinary �7.83�
�Ref. 71� and extraordinary �8.03� �Ref. 72� polarization
component determined from the analysis of the respective
DF below the wz-InN gap of 0.68 eV.

Due to the wurtzite symmetry and the neglect of spin-
orbit interaction, the VBM of InN is given by a twofold
degenerate state. Therefore, the two strongest bound excitons
�A, B�, corresponding to the Wannier-Mott 1s excitons, are
expected to be twofold degenerate as well. A third 1s-like
exciton �C� is expected to form between the first conduction
and the crystal-field splitoff vC band at an eigenvalue differ-
ing from that of A and B by roughly �cf. Since optical tran-
sitions between vA, vB, and the CBM at � are dipole allowed
only in ordinary polarization �E�c� and vC−CBM transi-
tions only in extraordinary polarization E �c,73 the corre-
sponding excitons are expected to have nonvanishing oscil-
lator strengths in the respective directions.74

For a moment we limit ourselves to the discussion of the
A and B excitons, which allow for a simple definition of their
binding energies.28 In agreement with the initial expectations
A and B are found to be degenerate. The inset of Fig. 11
shows their convergence with respect to the BSE-cutoff en-
ergy. The overall variation of the binding energy with respect
to the BSE cutoff is extremely weak due to the very small
binding energies and the strong localization of the lowest
conduction band around the � point �cf. Fig. 10�. According
to Fig. 11, a BSE cutoff of 2 eV—as used in the following—
should introduce an error of less than 0.1 meV.

The convergence with the number of k points is also dem-
onstrated in Fig. 11. Due to the combination of a narrow gap,
large screening, and a very small effective electron mass
found for InN, extremely dense k-point meshes are required
to converge the exciton binding energies. Therefore, the
double hybrid k-point meshes, as introduced in Sec. II E are
used to study the formation of excitonic states in InN. At the
high-sampling limit of the studied k-point meshes, the linear
variation with respect to the distance of adjacent k points, as
observed for the two-band model and MgO, is restored. Ex-
trapolating the binding energies of the lowest excitons to-
ward zero k-point distance reveals binding energies of about
5.0 meV for the A and B excitons. The absolute difference
between the computed values and the value of 6.5 meV, es-
timated using the two-band model, together with the appro-
priate masses and screening constant, is small.

Figure 12 shows the exciton spectrum of InN together
with the respective oscillator strengths for ordinary and ex-
traordinary light polarization. Further, the contributions cvc




=�k	Ãcvk

 	2 of the interband transitions between the three up-

permost valence bands vA, vB, vC, and the first conduction
band c have been analyzed. They are indicated by the rela-
tive lengths of the differently colored bars in the lower panel
of Fig. 12. Obviously, as the respective contributions sum up
to one, only the three single-particle pair states �vA ,c�,
�vB ,c�, and �vC ,c� are found to contribute to the excitons in
the energy interval shown in Fig. 12. Now, also the C exciton
can be identified. To this end, we perform a constrained cal-
culation with a pair Hamiltonian including only �vC ,c� tran-
sitions. The lowest eigenvalue of this Hamiltonian is found
2.3 meV below the vC-CBM gap �cf. Fig. 12�. Indeed, the
unconstrained pair Hamiltonian gives rise to an eigenvalue at
an only marginally higher energy—2.1 meV below the
vC-CBM gap. The respective exciton, however, is found to
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The cyan bars indicate eigenstates of a pair Hamiltonian, which
includes only contributions of the vC and the first conduction band.
The red dots indicate the average oscillator strength. In the lower
panel the contributions resulting from transitions between vA, vB,
vC, and the first conduction band c are analyzed �see text�.
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be a nearly half-half mixture of �vB ,c� and �vC ,c� contribu-
tions. Further, it is clear from Fig. 12 that the latter exciton is
neither the strongest bound state with contributions from
�vC ,c� transitions, nor is it the first exciton visible in extraor-
dinary polarization, nor does it have the strongest oscillator
strength in the latter polarization direction. Especially the
latter two points are notable since they contradict the initial
expectations and may affect the experimental assignment of
excitons. The reason for the observed behavior is found in
the k-point dependence of the single-particle optical oscilla-
tor strengths �	
�ck	pj	�vk�	2. While the optical transitions
�vA ,c� and �vB ,c� at � are dipole forbidden in extraordinary
polarization, they are allowed and of comparable strength
with the �vC ,c� transitions at off-� k points.

Finally, we address the influence of the LDA+U approxi-
mation on the present results. The electron and vC effective
masses at � increase with increasing U, but underestimate
the values calculated upon the HSE03 functional. Larger val-
ues than U=3 eV, however, yield a vanishing or even in-
verted crystal-field splitting—contradicting the HSE03 re-
sults and experimental findings. Due to the accompanying
crossing and mixing of the vA, vB, and vC bands, values
higher than U=3 eV are not meaningful starting points. The
same holds for lower values of U, which predict much too
small gaps and electron masses. The effect of the underesti-
mated electron mass can be estimated within the two-band
model, where the binding energy is found to depend linearly
on the reduced effective mass. Therefore, the computed bind-
ing energies of the A and B excitons may underestimate the
actual values by about 30%.

Apart from the influence of the U parameter, the calcu-
lated exciton binding energies are influenced by the screen-
ing. Especially dynamical screening56,57 may reduce the ex-
citon binding. The characteristic optical phonon energies
���LO=86 meV �Ref. 54�� are much larger than Rex so that
the lattice polarization can fully contribute to the screening
of the electron-hole attraction. For InN the static dielectric
constant amounts to �s=13.75 Using �s for the screening in-
stead of �� would significantly reduce the exciton binding
energies to values below 2 meV. Consequently, Wannier-
Mott excitons cannot be observed in the currently available
InN samples due to their high density of free carriers, which
is above the Mott-transition density.61–63

V. SUMMARY AND CONCLUSIONS

We have introduced a new and highly efficient numerical
approach for the solution of the homogeneous BSE for
bound electron-hole pair excitations in nonmetals. The use of
an iterative diagonalization scheme is demonstrated to di-
minish the computational costs for the calculation of bound
electron-hole pair states significantly, allowing for the sys-

tematic study of excitonic Hamiltonians with ranks up to
several hundred thousands. This is due, in comparison to the
O�N3� scaling of direct diagonalization methods, to its favor-
able O�N2� scaling. Further, a hybrid k-space sampling
scheme is presented, which allows a refined sampling in se-
lected parts of the BZ and simultaneously avoids an artificial
localization of the exciton wave functions. The correspond-
ing discretization of the pair Hamiltonian EVP is performed
and found to yield a generalized EVP with a diagonal over-
lap matrix.

As a first test and paradigmatic example, the developed
numerical approaches are applied to the Wannier-Mott exci-
ton, which is solved numerically in the reciprocal space. Us-
ing realistic model parameters for the reduced effective mass
and screening constant, the numerical convergence is sys-
tematically studied with special focus on the convergence
with respect to the k-point sampling. The well-known ana-
lytical solution of a hydrogenlike exciton series is repro-
duced for the lowest bound pair states corresponding to the
principle quantum numbers n=1. . .3, including the expected
degeneracies of exciton states and the oscillator strengths.

Further, the developed approaches are applied to the non-
metallic materials MgO and InN, which both show Wannier-
Mott-like excitons. The respective excitons, however, differ
drastically in terms of their localization and consequently
convergence due to the very different electronic structures
found for both materials. Nevertheless, the convergence
trends identified for the Wannier-Mott model are found to
hold and allow for the extrapolation of k-point converged
binding energies for the strongest bound excitons. If only the
electronic screening is taken into account, the converged
binding energies clearly exceed the experimental results.
This is attributed to the influence of the lattice polarization
on the screening and therewith the exciton binding.

Further, the achieved level of convergence, together with
the account for the complete electronic structure, allows for
the discussion of effects, which are not addressable in k ·p
theory. For InN, for instance, the often neglected k depen-
dence of the single-particle oscillator strengths is shown to
influence the polarization dependence of the lowest excitons
drastically.
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